=SEEIZDIS

Get'printedicopies
at themagpi.com .-

A Magazine for Raspberry Pi Users

j [YY957 v - | BIGGEST ISSUE YET!
USB Ardu'n o “!.Ik] 8 M [44 pa/ges of Raspberry Pi goodness
Logi-Pi FPGA | "’ :

P|' Mattr|X:
PATOSS ;%},
PI-LItE“’ ;

]

g z 3 B
l ~ G 4 o
aSh X pxeq i
1 " : i 9
" A . Y bk h | ¥
z

davailiniiiitl Expandlng
T your senses with IC

competitions!
Win a 512MB
Raspberry Pi
& interfacing
goodies

917720517999008

Raspberry Pi is a trademark of The Raspberry Pi Foundation.
This magazine was created using a Raspberry Pi computer.

http://www.themagpi.com

Welcome to issue 16 of The MagPi.

It's back... Skutter returns to the pages of The MagPi and this time it's more sensitive! Stephen takes
you in detail through expanding the number of inputs and outputs which can be controlled from your
Raspberry Pi using I2C. This will allow you to add more sensors to your bot while driving the base unit.

In this issue we have some great hardware projects like Jorge's PATOSS for monitoring his injured bird
and we learn how to scroll text on the Pi Matrix.

We have more on connecting your Raspberry Pi to an Arduino in Tony's great article on driving a liquid
crystal display plus an amazing look into connecting your Raspberry Pi to Logi-Pi by Michael Jones.

After all that, we supplement the above with some fantastic software articles.

We are pleased to provide more on programming in Java by looking at control flow sentences,
numbers, strings and booleans with Vladimir. For the cherry on the cake we have more from Bash
gaffer tape and building and parsing XML in Python.

Hope you enjoy the biggest issue of The MagPi to date.

Ash Stone

Pt St

Chief Editor of The MagPi

The MagPi Team

Ash Stone - Chief Editor / Administration / Layout Sai Yamanoor - Tester

Aaron Shaw - Issue Editor / Layout / Proof Reading Claire Price - Layout / Proof Reading
W.H. Bell - Layout / Administration Courtney Blush - Proof Reading
Bryan Butler - Page Design / Graphics Amy-Clare Martin - Layout

lan McAlpine - Layout / Testing / Proof Reading Matt Weaver - Layout

Colin Deady - Layout / Proof Reading Gerry Fillery - Proof Reading

Matt Judge - Website / Administration
Shelton Caruthers - Proof Reading

R
Contents

SKUTTER I2C
Expanding your senses with 12C

PATOSS
The Pato surveillance system

Pl MATRIX
Part 4: Multiplexing and scrolling text messages

BOOK REVIEW
Raspberry Pi in Easy Steps and Python for Kids

THE PI-LITE
A plug and play LED matrix board

LOGI-PI SPARTAN6 FPGA BOARD
Raspberry Pi meets FPGA

USB ARDUINO LINK
Part 2: driving an LCD

AB ELECTRONICS COMPETITION
Win a selection of expansion boards

THIS MONTH'S EVENTS GUIDE
Cambidge, CAS North London, At-Bristol, CERN

FRESHLY ROASTED
Part 2: Java control-flow statements, numbers, strings and booleans

PCSL COMPETITION
Win a Raspberry Pi Model B and accessories

BASH GAFFER TAPE
Part 3: Strings and arithmetic operations

<XML />
Part 2: building and parsing XML in Python

FEEDBACK
Have your say about The MagPi

http://www.themagpi.com

http://www.themagpi.com

senses with 12C

Limitations of the GPIO

We all love the Raspberry Pi. For me the best
thing about it, apart from its low cost and low
power consumption, is the General Purpose
Input and Output header (GPIO). Having that
sort of access between the virtual and real world
on such a tiny yet powerful computer has allowed
me to begin working on a robotics project which
until recently | was only able to imagine.

In spite of this, the Raspberry Pi does have some
limitations when it comes to building robots. The
GPIO has only a limited number of pins to work
with. Let's say you have built two simple H-bridge
circuits to control motors on your robot. That
might take up as much as eight of your GPIOs.
Let's imagine you want to include some micro
switches on the gripper of a robot arm and some
more switches on the robot's bumper (or fender if
you are in the US) to detect collisions... before
long we've got more inputs and outputs than
we've got pins! Things are only complicated
further when we consider that if we draw more
than 48mA in total from the GPIO at any point,
we run the risk of frying the whole thing!

Introducing I2C

So what is a robot builder to do? Happily there is

Skutter - Expanding your

a solution to all of this: something that throws
open the doors to a whole galaxy of wonderful
electronic devices and sensors. This solution is
called the I2C bus (often called the "two wire
interface").

Some people pronounce I°C as "eye two see"
while others say "eye squared see"; either is
acceptable. One of the many available devices
that use this is a "GPIO expander" such as the
MCP23008. [Ed: The MCP23017 which is used
in the Pi Matrix is the 16-bit version]. There are
many others also available such as =
"analogue to digital converters", |
"accelerometers” and many more ;
: : BUS
which | will cover later. —

=
="
Lt

L]
I
|

Using the I2C bus can be daunting at first. I2C is
unlike USB. USB just seems to work because,
although highly complex, it is tightly controlled
with a very rigid set of standards. The I2C bus in
comparison is much more of a free-for-all.
Nevertheless it is extremely effective.

To work with this beast, first we need to
understand it. It's known by the nickname "two
wire" because it uses two wires to communicate
between two or more devices. One of these
devices is known as the master with the other
devices known as the slaves. In most

conceivable situations the master would be the
Raspberry Pi.

A tale of two wires

On the GPIO header are two pins called SDA
and SCL. These two pins are the keys to opening
the I2C bus. SDA refers to Serial DAta and SCL
refers to Serial CLock.

The SDA is able to transmit a series of bursts of
eight 1s and Os (called a "byte"). These bytes of
data are sent along the SDA wire (bus) and are
received by all of the slaves on the bus. The
"clock" on the SCL wire is used by both the
master and the slaves to allow timings to
coincide with these 1s or 0Os.

For example, imagine if the byte sent across the
SDA bus from the master was "11111110". How
would the slave know that this was seven
separate "1" bits or just one single "1" bit that has
been turned on for a long time? The clock pulses
on the SCL bus allows the slave to know this.

SDA

<JUyuuyuyyy

1 1 1 1 1 1 1 0

When the master sends a byte down the SDA
bus, every slave on that bus will receive that
byte. "Addressing" ensures that the right device
actually uses it. When two devices communicate
over 1°C they do so in a series of bytes. This
series of bytes is called a "message". A message
always begins with a special "start" sequence
and ends with a special "stop" sequence. This
start and stop sequence of bits cannot occur at
any other time.

After a start sequence, the next byte of
information is a seven bit address. A byte
contains eight bits and the eighth bit of the
address is used to tell the slave device if it is
going to be used to send or receive data.

Once the first address byte has been sent, only
the device with that corresponding address
continues paying attention to the rest of the
message. All the other devices stop paying
attention until the stop message sequence is
sent.

Disorganisation is the key to success

This seems logical so far, but now we get to the
disorganised part. The 12C protocol dictates what
the "start" message and "stop" message must be
and that the first byte of the message must be
the address of the slave device. After that there
are no rules at all. Every different I2C device is
allowed to use all the data between the address
and the stop message in any way it wants.
Before you can use an I1°C device, you have to
study the documentation (called the data sheet)
for it to understand how it uses all those bytes of
data.

In the rest of this article | will provide an example
of this by working through the relevant parts of
the datasheet for the MCP23008 [2C 8-bit GPIO
expander, plus how to connect this to the
Raspberry Pi and how to write a simple Python
program to control it.

Controlling the MCP23008

The MCP23008 is very useful to a robot builder
because it gives us a relatively simple means of
providing more inputs and outputs than the
standard GPIO and with more power available.

As stated already, every I2C device works
differently. For this reason it is essential to obtain
a copy of the datasheet for the device you are
working with. To get the most from this article
download a copy of the MCP23008 datasheet
(http://wwl.microchip.com/downloads/en/Dev
iceDoc/21919e.pdf). From here on in | will be
referring to the "MCP23008/MCP23S08 8-Bit I/O
Expander with Serial Interface" published in
2007 by Microchip Technology Inc.

The first useful piece of information in this

http://ww1.microchip.com/downloads/en/DeviceDoc/21919e.pdf

datasheet is the pin out diagram on page 2.
Make sure you look at the pin out for the correct
device as several are shown. Using this diagram
we can begin to make sense of how we can
connect this microchip to our Raspberry Pi.

The first question is which way is "up" on our
microchip? If you look carefully you will see a
small notch on one end of the device. This
signifies the "top".

The key here are
[]sa VOD | | he first two pins on
[|soa rio7 |] the left hand side:
SCL and SDA.
[]A2 oo OP06[| These can be
()
[] A S GPIOS connected to the
2 corresponding pins
[]Ao é GPIO4 [| on the GPIO of the
[| ReseT GPI03 [] Raspberry Pi.
[|NC GPIO2 [] The next three pins
are A2, A1 and AOQ.
Lf GPIO1 [] From page 5 these
[]vss Gploo| | are the address
pins.

On page 8 the datasheet states "The slave
address contains four fixed bits and three user-
defined hardware address bits". This means this
part of the address byte can be configured to
whatever we want. Let's assume we connect
pins A2, A1 and A0 to ground. This is equivalent
to making them 000. On the same page we are
given a diagram that shows that the first part of
the address for this device must begin with 0100.
Our three pins set the second part of this
address to 000, therefore the address for this
device configured in this way would be
0100000.

The very final bit in this address is used to
command the MCP23008 to work as an input or
an output. The diagram on page 8 of the
datasheet shows we must use 0 for write (output)
and 1 for read (input).

The next pin along is called RESET. The pinout

description on page 5 declares this must be
biased externally. For normal use you can get
away with just connecting this pin directly to the
positive (+ve) terminal of your power supply.

Power requirements

The other two really important pins are V¢q and
Vpp- Vg is ground and V, is +ve power. (I found
that out by checking the pin out description again
on page 5 of the datasheet).

Skipping along in the datasheet to page 23 we
find the electrical characteristics of the device.
From here we can see that this microchip can
run on 3.3V logic or 5V logic. Additionally we can
see that the device can sink or source 25mA
from each GPIO up to a total of 125 mA.

Access to this extra power boost from the GPIO
is very useful. Not only does it give us more pins,
it supplies more power as well! This is a great
advantage when building a H-bridge motor
controller, for example. It also means we can use
much cheaper, lower valued, current gain
transistors than those that were necessary when
running one directly from the Raspberry Pi GPIO.

There is another important health warning to
consider here however. Although it is possible to
run this device on 3.3V or 5V, the Raspberry Pi
itself is not tolerant of 5V. Connecting this device
to a 5V supply and then trying to use your
Raspberry Pi to control it is very likely to cause
terminal damage to at least the GPIO, if not the
whole Raspberry Pi! Happily it is possible to
convert the 3.3V logic of the Raspberry Pi to 5V
logic and let the two run safely together using a
simple logic level converter circuit. | will describe
this circuit later on. For now | will explain how to
start using the MCP23008 with the Raspberry Pi.

Setting up the MCP23008 and RasPi

Start off by carefully plugging the MCP23008
into a breadboard. You will see a "gutter" going
down the middle of your breadboard. This gutter
isolates the two halves of the breadboard from

each other. This means that you can plug in the
MCP23008 and know that you are not
connecting the pins on either side of the chip to
each other. The gutter also makes it easy to
remove a microchip. You can carefully work a
small flat headed screwdriver under the chip and
along the gutter to lift the chip out without
bending all the pins.

Before we can start using 1°C on the Raspberry
Pi we need to make a few changes to some
configuration files (assuming you are using a
Raspbian distro). The I2C drivers are disabled by
default. Let's enable them. From the command
line, enter:

cd /etc
sudo nano modprobe.d/raspi-blacklist.conf

Look for the entry blacklist 1i2c-bcm2708 and
add a hash '# at the beginning of the line so it
becomes #blacklist i2c-bcm2708. Press
<Ctrl>+<X> then press <Y> and <Enter> to save
and exit.

Next edit the modules file. From the command
line, enter:

sudo nano modules

Add i2c-dev on a new line. Press <Citrl>+<X>
then press <Y> and <Enter> to save and exit.

Next install some tools and Python support. From
the command line, enter:

sudo apt-get update
sudo apt-get install python-smbus
sudo apt-get install i2c-tools

Now add the 'pi' user to the i2c group. From the
command line, enter:

sudo adduser pi i2c

Finally, shutdown your Raspberry Pi. From the
command line, enter:

sudo halt

Plug in the MCP23008

Connect the SDA and SCL on the MCP23008 to
the corresponding GPIO connections on the
Raspberry Pi.

Connect V,, and RESET on the MCP23008 to
3.3V power on the GPIO. Connect V,, on the
MCP23008 to Ground on the Raspberry Pi.

left
bottom top
P1-01 Pl1-02

E] ° 5V Power
SDA and SCL GPIO 0 (SDA) ° 5V Power
forl2C2wire) ™ = |

GPIO 1 (SCL) @ ° Ground

Bt () cpio 14 x0)
Ground ° @ GPIO 15 (RXD)
GPIO 17 ° s N
o @ @ e
GPIO 22 ° o GPIO 23
3V3 Power @ ° GPIO 24
GPIO 10 (MOSI) o ° Ground
GPIO 9 (MISO) ° ° GPIO 25
aro e @) @) crios ceo
Ground o ° GPIO 7 (CE1)

P1-25 P1-26

3V3 Power

We are now ready to try a few experiments. Turn
on the Raspberry Pi.

From the command line, enter:
sudo i2cdetect -y 1

NOTE: Use 0 instead of 1 for the bus number in
the above command if you have an original
(revision 1) Raspberry Pi. The revision 1
Raspberry Pi does not have any mounting holes.

If everything is connected up properly you should
see output something like the screenshot on the
next page.

A pi@ninja-pi: ~
File Edit Tabs Help
pi@ninja-pi

1

pi@ninja-pi []

This means the MCP23008 is communicating
with the Pi on address (hex) 0x20.

If we want to use more power than the GPIO on
the Raspberry Pi can deliver there are a few
more steps we need to take first.

Converting 3.3V to 5V logic

Connecting V, of the MCP23008 to 3.3V on the
GPIO of the Raspberry Pi means that the output
of this chip is still affected by the GPIO power
limitations. We can connect the device to the 5V
supply instead, however that means you are
mixing 5V logic with 3.3V logic on the Raspberry
Pi and it will not take kindly to this!

The circuit diagram on the right shows a simple
circuit that can safely convert 3.3V logic to 5V
logic and vice versa. It uses two MOSFETs. A
suitable MOSFET is the commonly available
BSN20.

Be warned however that the BSN20 is a very
small device. To get it working | cut the tracks on

a small piece of stripboard, soldered the
terminals of the MOSFET across these and then
added some larger connectors to make it
suitable for plugging into breadboard.

The symbol used in the circuit diagram is not the
conventional MOSFET symbol. | have shown it
like this to help visualise the way the little device
should be connected.

5v from GPIO pin 2 on Pi

Ground from GPIO pin 6 on Pi
3v3(3.3v) from GPIO pin 1 on Pi
T :IRT::I
G
w1 5V SCL
SCL from GPIO pin 5 on Pi -
] D
S
G
5V SDA
SDA from GPIO pin 3 on Pi L m2 1
|- D
S

The purple line signifies 3.3V from the GPIO.
This goes to the "Gate" on the MOSFET. The red
line signifies the 5V supply. This is connected to
the "Drain" of both of the MOSFETs via a "pull
up" resistor. (In I12C the natural state of the bus is
"low". When a current is applied to the bus via a
pull up resistor, it temporarily pulls the signal up
to an "on" or "high" condition).

The value of the pull up resistor is not that
important. It's generally agreed it should be
between 1K and 10K. Many people use 4.7K and
report that it works well and this is the value |
used for my version of the circuit.

Finally, we need to provide conversion from SCL
and SDA on the Raspberry Pi. These lines
should be connected to the "Source" of the
MOSFET.

Everything on the right hand side of this circuit is
now a 5V I2C bus and everything on the left is a
3.3V I2C bus and the two can work safely
together in series!

Creating an example Python H-bridge
control program

We are now ready to control the GPIO pins 0 to 7
on the MCP23008. Looking at page 6 of the
datasheet we can see that the device uses a
number of internal registers to control everything
it is capable of. The only registers we are really
interested in are IODIR and GPIO. Nevertheless
it is important to set all the other registers as well

to try to prevent anything unexpected happening.

Sometimes the language used in data sheets
can be confusing so | have tried to translate into
plain English the name, address and function of
each register and put it in the table on the next
page. | recommend reading the datasheet first
and then check your understanding. Being able
to read these documents is an important skill.

Register Address Description

IODIR 0x00 0 = out (write), 1 = in (read)

IPOL 0x01 Input / output polarity on GPIO bit 7 to bit 0. If bit is set, GPIO value will reflect
the inverted value.

GPINTEN 0x02 Interrupt on change on bit 7 to bit 0. If bit is set then it will generate an interrupt
if that pin changes.

DEFVAL 0x03 Default value to compare against GPINTEN bit 7 to bit 0. If bit is set, opposite
value on corresponding pin will generate interrupt.

INTCON 0x04 Interrupt control register. If bit is set then corresponding 10 pin will be
compared against the value set in the DEFVAL register.

IOCON 0x05 Setup: bit 5 = sequential operation, bit 4 = slew rate, bit 3 is not used, bit 2
open drain, bit 1 = sets polarity of INT pin. Only functions if bit 2 is clear.

GPPU 0x06 GPPU pull up resistor, bit 7 to bit 0. If bit is set and pin is input then this will
pull up the pin with 100k resistor.

INTF 0x07 Interrupt flag, bit 7 to bit 0. If bit is set it means the associated pin will generate
an interrupt. A set bit tells us which pin caused the interrupt. READ ONLY.

INTCAP 0x08 Interrupt capture. Captures GPIO value at time of interrupt, bit 7 to bit 0.
Remains unchanged until interrupt is cleared via a read of INTCAP or GPIO.

GPIO 0x09 The GPIO, bit 7 to bit 0.

OLAT 0x0A Output latches.

Python code

The last Skutter article in issue 8 of The MagPi
included some simple Python code to control a
H-bridge motor controller connected to the GPIO
on the Raspberry Pi.

The code on the next page will control two H-
bridge controllers connected to the GPIO's on an
MCP23008. (Don't forget to change the bus to 0
if you are using a revision 1 Raspberry Pi).

Conclusion

| hope this will help you to begin to understand
how to control I1°C devices and how useful they
can be to a robot builder. If you find an I2C device
that can perform a vital function for a robot you
are building, (such as an analogue to digital
converter, an accelerometer or a distance
sensor), hopefully you will now be able to read
through the datasheet and make sense of how to
control it.

#! /usr/bin/python

import smbus import time
address = 0x20

Define all the registers
IODIR = 0x00
IPOL = 0x01
GPINTEN = 0x02
DEFVAL = 0x03
INTCON = 0x04
IOCON = 0x05
GPPU = 0x06
INTF = 0x07
INTCAP = 0x08
GPIO = 0x09
OLAT = 0xO0A

bus = smbus.SMBus (1) # Change to 0 for revision 1 Raspberry Pi

Set IODIR as OUTPUT
bus.write byte data(address, IODIR, 0b00000000)

Reset all the other registers
for reg in [IPOL,GPINTEN,DEFVAL,INTCON,IOCON,GPPU, INTF, INTCAP,GPIO,OLAT]:
bus.write_byte data(address, reg, 0b00000000)

Set the GPIO's to turn on/off transistors in H-bridge. See circuit diagram.
#GPIO O - 1 = motor 1 fwd.

#GPIO 1 - 1 = motor 1 fwd.

#GPIO 2 - 1 = motor 1 rev.

#GPIO 3 - 1 = motor 1 rev.

#GPIO 4 - 1 = motor 2 fwd

#GPIO 5 - 1 = motor 2 fwd

#GPIO 6 - 1 = motor 2 rev

#GPIO 7 - 1 = motor 2 rev

e IMPORTANT —-——————mmmeemmmmmemmrmmeeeee e

IF GPIO O, 1 is "1" THEN GPIO 2, 3 must be "O" ELSE transistor short circuit.
IF GPIO 4, 5 is "1" THEN GPIO 6, 7 must be "O" ELSE transistor short circuit.

Set all GPIO off

bus.write_byte_ data(address, GPIO, 0b00000000))
Test motor 1 and motor 2 FWD for 3 secs
bus.write byte data(address, GPIO, 0b00000011))
time.sleep(3)

Set all GPIO off

bus.write_ byte data(address, GPIO, 0b00000000))
time.sleep(1l)

Test motor 1 and motor 2 REV for 3 secs
bus.write byte data(address, GPIO, 0b00001100)
time.sleep(3)

Set all GPIO off

bus.write_ byte data(address, GPIO, 0b00000000)
time.sleep(1l)

Test hard right turn for 1 sec
bus.write byte data(address, GPIO, 0b11000011)
time.sleep(1l)

Test hard left turn for 1 sec
bus.write_ byte data(address, GPIO, 0b00111100)
time.sleep(1l)

Set all GPIO off

bus.write byte data(address, GPIO, 0b00000000)

Raspberry Pi® Colour LED Plate
18-channel 8-bit PWM (0-255)
Individually addressable

6 hues + white

~300-500mcd per LED

Fits nicely inside a Pibow

PIMO

http://shop.pimoroni.com/products/piglow RONT

MIBEIR

The neat little log cabin for your Raspberry Pi®

@

Made from real Available From: PIMO
spruce hardwood http://pibow.com/ RONI

http://shop.pimoroni.com

O |
= |

DIFFICULTY : INTERMEDIATE

At the start of July my friend and | came across a
bird in the street that had apparently sustained
an injury to his leg. We took the bird, later
named Pato, to the vet for review. It was
reported by the doctor that Pato had a broken leg
- this required plastering and Pato needed a lot
of TLC for a week.

As | do not spend a great deal of time at home
the idea of setting up a system in order to
monitor Pato was posed. As my occupation is a
System Engineer for Linux / Unix systems, |
though it wouldn’t be so difficult to set-up a
monitoring system by using a Raspberry Pi
board and some sensors in order to monitor Pato

via the internet. Thankfully | had a spare
Raspberry Pi lying at home and so | got to work.

The Pato surveillance system

Jorge Rancé

Guest Writer

What to monitor and how to do it

The system | would create had to be able to
send a current picture from Pato’s cage, check
the temperature of his environment and control
the water level. In order to meet these goals |
used a webcam for the pictures, a thermometer
for the temperature and a liquid level sensor for
the water level.

Taking pictures

To set up the webcam was quite straightforward.
After plugging it into the USB port and powering
up the Raspberry Pi, | ran 'Isusb'. This command
checks to see what USB devices the system
detects and recognises. In my case the webcam
was properly detected as:

pi@raspberrypi ~ $ lsusb | grep C270

Bus 001 Device 006: ID @46d:0825 Logitech, Inc.
Webcam C270

pi@raspberrypi ~ $
Once the webcam was properly detected, | had
to enter some simple commands to install and

configure motion:

sudo apt-get install -y motion

Gz

After installation had completed, before starting
the webcam, | had to modify three parameters
inside /etc/motion/motion.conf - giving them the
following values:

Daemon = OFF to ON

webcam_localhost = ON to OFF
start_motion_daemon= "no" to “yes”

With those changes made | then ensured that the
Raspberry Pi was streaming video by entering
the following into a browser:
http://192.168.x.x:8081

(Where x.x should be altered to match the end
numbers from your IP address which you can
find by typing 1fconfig into a terminal window.)
Monitoring the temperature

In order to check the temperature of Pato's
environment, | bought a USB Temper
thermometer via eBay. It required more work
than the webcam to get working.

First, | had to ensure all the necessary
dependencies were installed. This was

completed using the following command:

sudo apt-get install -y build-essential libusb-
1.0.0 libusbdev

The latest version can be cloned from the temper
binary via git:

git clone
https://github.com/bitplane/temper.git

Once downloaded it can be compiled with:
cd temper/make
And then, the new binary must be run using:

sudo ./temper 16-Jul-2013 00:02,26.089081

| prefer to get rid of the date and time. This can
be done using the following script:

TEMP="sudo /home/pi/temper/temper | awk '{
print $2 }' | cut-d, -f2 | cut -cl1-5" echo
"$TEMP'C"

This must then be run using the command:
pi@raspberrypi ~ $./temperatura.sh 25.63'C
Reading the liquid level sensor

| had recently bought a PiFace board and felt
that this would be a good opportunity to use it for
the first time.

It couldn’t be easier. The liquid level sensor was
connected to digital input zero. In order to check
if there's water or not, | ran the following script.
If there's enough water, it would return 1:

import piface.pfio as pfio

pfio.init(Q)

print pfio.digital_read(@)

And then, run it!

pi@raspberrypi ~ $ python boya.py 1
Sending tweets from the Raspberry Pi

Once everything was set up from the software

L)

http://youtu.be/GImeVqHQzsE

and hardware point of view, now was the time to
find out how to send tweets.

| did open a Twitpic account in order to make
things easier, so it just had to send an e-mail with
an attached picture and the information | wanted
to be posted. In order to do that | wrote a really
simple script:

#!/bin/sh
CPUTMP="/home/pi/cpu_temp.sh"

ENVTMP="/home/pi/temperatura.sh’
LIQUID="python /home/pi/boya.py"
if [${LIQUID} -eq 1]; then

elif [${LIQUID} -eq @]; then

‘ PATOSS@bcn

fi

SUBJECT="RPi temp: ${CPUTMP}. Room temp:
${ENVTMP} .

${AGUA}. " echo ""
/tmp/motion/patoss. jpg -

| mutt -a

s "“echo ${SUBJECT} " -- xxxx@twitpic.com

And this is what is being posted on Twitter:
AGUA="Water level OK'

AGUA="Pato needs water'

Well that concludes the project! | am pleased to
write that Pato is doing very well and | can work

away from home, safe in the knowledge that he
is well looked after.

RPi temp: 63.8'C. Room temp 26.73'C. Pato

needs water.

(8) TwitPic

View on web

e

Connect your Raspberry Pi to the World!

Demonstration Page @
(. r—rw—r—— , o s) 0‘
*] R
spberry Pi System Status .

7 15:18:27 PDT 2013 (Demo)

wilh in-app purchose

emal address here' = 7 B 8%
asPiConnect: (Demo Mode) iPhone Demo ; @
J =2
e web> ic e
: g
Flash LED

O Motion Detected e
O
Water (i TR i
e =

|
_ Raspberry Pi System Status
System Time: Sat Apr 27 22:02:14 UTC 2013
Uptime: 22:02:14 up 5 days 9:55

Control Object Report

[Room Temperature: 21.00 C
Pressure: 935.25 hPa

CPU Temp: 4331 C

1P Number: 192.168.1.20

nonstration Page / StatusWebView / H mote Webview / W-1/ Demo Mode

nonstration Page /Lght On / Action Button / B-1/ Demo Mode

nonstration Page /VItmt / Voltmeter Gauge / M-1/ Demo Mode

jon Page / Running / Gauge / M-2/ Demo Mode

je 2/ Button / Action Button / B-1/ Demo Mode

ion Page / Wattage C / FM Blink LED / BL-1/ Demo Mode

Last ello 100
I i
O Motion Detected
~ J
e

nonstration Page / Alarm Sys(em / Title and Text / LT-1/ Demo Mode

nstration Page / Send to System/S nd Text / ST-1/ Demo Mode

nsra;oVnPg/Cath Lw/LbI/LU1/Dmon

e/Remot Pcl Wb iew / Remote Picture Webview / W-2 / Demo Mode
/Geenh /Srve Status / SS-1/ Demo Mode
ration Page / Living Room / Servér Status / $S-1/ Demo Mode

emonstration Page / Noise Level (dB) / Voltmeter Gauge / M-1/ Demo Mode

' Available on the emonstration Page / Stereo On / Action Button / B-1/ Demo Mode

RasPiConnect connects your Raspberry Pi to the outside world. It
allows you to control virtually anything you connect to your
Raspberry Pi from your iPad or iPhone.

- EASY to setup - no syncing required

- Buttons, gauges, webpages, webcam pictures and more!

- Build your pages on your iPad/iPhone

- Supports multiple Raspberry Pis

- Five pages of control panels

- Unlimited Controls

- Exchange your panels with friends

- Supports any computer that supports Python (windows, linux, etc.)
- Now allows custom backgrounds

http://milocreek.com

Pl MATRIX
Control an 8x8 matrix of 64 LEDs

Part 4: Multiplexing and

scrolling text messages

Introduction

Previously we looked at how to build the Pi
Matrix and how to drive its 16 pins. But 16 pins
cannot completely address all 64 LEDs at the
same time. We will talk about multiplexing and
learn how to scroll text characters across the
display, building on sample code from before.

Multiplexing

So far all of our display routines have involved
turning on a number of LEDs in a row and
repeating the same pattern over any number of
rows. But for some applications this is not
enough. Suppose we need to turn on 3 LEDs in
row 1, a different number of LEDs in row 2 and
yet another pattern in row 3. We will need this
capability if we want to display complex symbols
on the display, like text characters. We need
multiplexing.

With multiplexing we do not display all the rows
at the same time; we display them sequentially.

For each row:
Display pattern #n on row #m
Wait a few milliseconds (at most)

If we do this fast enough our eyes are tricked into
thinking that all of the rows are being displayed

at the same time (aka persistence of vision). We
must refresh the entire display at least 30 times
per second, which means that we cannot spend
more than about 4 milliseconds on each row. As
Python does not run too quickly on the Raspberry
Pi the wait between rows can be omitted. The
following simple routine will do all the
multiplexing we need:

def MultiplexDisplay(z, speed):
for count in range(@, speed):
for row in range(@, 8):
SetPattern(l<<row, z[row])

The variable 'Z' is a list of 8 elements with each
element holding a row pattern. z[0] holds the
pattern for row 0, z[1] holds the pattern for row 1,
etc. The whole display is refreshed (speed)
times giving the user enough time to view and
interpret the display.

Puppies and fonts

| thought it would be interesting to draw some
characters on the Pi Matrix but my 9 year old
daughter had a different idea... puppies! She
pulled out some graph paper, asked me to draw
the right-sized box and then proceeded to shade
in the squares of her puppy dog design. She
handed the paper back to me and waited for me
to put her design on the Pi Matrix. Let’s do it!

co|ci|cz|c3|ca]c5|ce]cT

RO X

R »

R2ZExX | ¢ | % X

R3 X X

R4 X x| x|x

o X | x| x|x

R6 X j{

Rk X X

Starting with the top row, we see that only bit 2 is
lit. For this we need binary 00000100, which is
0x04. In the next row, we have bits 1 and 2,
which is 0x06. Here are the values that we will
need for all eight rows: 0x04, 0x06, 0x27, 0x44,
0x3C, 0x3C, 0x24, 0x24. That'’s our list input for
the routine:

def DisplayPuppy():
z = [0x04, 0x06, Ox27, Ox44, 0x3C,
0x3C, 0x24, 0x24]
MultiplexDisplay(z, 100)

After this success | was encouraged to tackle the
alphabet. A quick internet search for 8x8 fonts
gave me exactly what | needed; 128 characters
in ASCII order, encoded as 8 rows of 8 pixels
(bits). All I needed to do was ‘pythonize’ the data
into one big list of lists, like this:

data = [..

[ox0C, Ox1E, 0x33, 0x33, Ox3F, 0x33,
0x33, 0x00], # U+0041 (A)

[Ox3F, 0x66, 0x66, @x3E, 0x66, 0x66,
Ox3F, 0x00], # U+0042 (B)

[@x3C, 0x66, 0x03, 0x03, 0x03, 0Ox66,
0x3C, 0x00], # U+0043 (O

-]

| put this data into its own file called font0.py.
You can download this file from
http://w8bh.net/pi/font@.py. To add it to your
program all you have to do is import it. The big

list is referred to by its module name, dotted with
the list name: font0.data. The index to any
character in the list is the ASCII number of the
character, which we can get by using the Python
function ord(). Try this:

import font@

char = raw_input("Enter a character to
display: ")

z = font@.data[ord(char)]

#print char, z

MultiplexDisplay(z, 100)

With just a few lines of code we can display any
character on the Pi Matrix. | added the “#print
char, z’ statement for debugging purposes. It is
commented out so it doesn’t do anything.
Remove the hash and it will show you the
character’s data.

Text

Now let’s try displaying words and sentences.
Enter a string and display each character in the
string.

def DisplayString(Q):
message = raw_input(“Enter a message
to display: “)
for char in message:
z = font@.data[ord(char)]
#print char, z
MultiplexDisplay(z, 100)

Python is pretty cool here because it is able to
iterate over all of the characters in the message
without having to grab each character or
explicitly set boundaries.

Scrolling

To scroll you need two pieces of data: the data
that is currently being displayed and the data that
is about to be displayed. For the Pi Matrix this
means we will keep track of data for two
characters at a time. | call our current character
‘Z’, since this is how | started (above), and call
the next (buffered) character ‘buf’. To scroll we
shift our current display one pixel to the left and

http://w8bh.net/pi/font0.py

move our buffered data onto the display by the
same amount. English is written left-to-right, so
left-ward scrolling works the best.

Let’s try an example, the word ‘Pi’.

XXX | X]|X[X
XX X | X
XX X | X
R|X | XXX
XX
X | X

XX | X | X

Here is our data. The blue boxes are Z’ and
represent what is being displayed on the Pi
Matrix. The green boxes are ‘buf’, the buffered
data waiting to be written to the display.

In this example we will scroll the word ‘Pi’. The
‘P’ is being displayed and the i’ is waiting its
turn. If we scroll to the left by one pixel the left-
most blue column disappears. Although only the
‘P’ is visible both characters have shifted slightly
to the left.

X | X

| 2| X

AP e b dbodb dbrd b
b b bd b b
>
*

To do this in code, take one row at a time. Shift
the bits in the row to the left making sure that the
left-most bit in the green box (buf) gets
transferred to the rightmost bit in blue (z).

Here's what things look like on the next scroll.
The leading part of the i’ is now appearing on
the display.

XX [X]| X

X X[X
X XX
XX [X|X

X

X

XX

But what if we were doing a longer word, like
‘pie’. We need to add the ‘e’. There is too much
space behind the i’ already!

Remember, however, that the green box is just a
buffer and isn’t being displayed. We'll fill it with a
new character as soon as the previous character
has been completely shifted into the blue box (i.e
is visible).

It is time to code the shift routine, using 'z' and
‘buf'.

def ScrollLeft(z, buf):
for row in range(@, 8):
z[row] >>= 1
image row right 1 bit.
if buf[row] & 0x01: #is bit 1 of
buffer high?
z[row] |= 0x80 #rotate bit 1
of buffer into bit 7 of current image.
buf[row] >>= 1 #shift buffer
row right 1 bit also.

#shift current

The ‘>>= 1’ operation shifts the operand one bit
to the right; b7 becomes b6 and so on. We do
this for each z[row] and buf[row]. The 'if'
statement shifts data from buf to z.

Now we have all the parts we need to scroll.
Start with a blank display and load the first
character into buf. Scroll one bit at a time and
display the data. After every 8th scroll, load a
new character into buf. Done!

Making it useful

My first python program grabbed user input from
a prompt like this:

st = raw_input("Enter something: ")
There are other ways to get input. One method
is to take it from a command line parameter, like
this:

./matrix4.py “Go Away!”

It is easy to get the command line parameters in

Python. First import the sys module then
sys.argv will return the list of command line
parameters:
import sys

print sys.argv

From the above example, the program name
‘matrix4.py’ is contained in sys.argv[0] and our
text is in sys.argv[1]. We can also get text from
something called ‘standard input’. Stdin is the
source for command-line programs in all Unix-
like operating systems. By default this is the
keyboard. If we want to look for other sources
from Python we can read from sys.stdin instead.
Combining the two gives us lots of input choices:

import sys
if len(sys.argv) > 1:

st = sys.argv[1l]
else:

st = sys.stdin.read()

Skutter - build a robot (1, 2, 3, 6, 8, 16)

Play and create computer music (2, 12, 13)
GPIO interfacing for beginners (2, 3, 4, 5, 7)
Command line / Bash (2, 3, 4, 5, 10, 12, 16)
3-axis accelerometer (4)

Customise the LXDE menu (4)

Now we can get do all sorts of neat Linux stuff
like pipes and redirects:

./matrix4.py "The yellow brown dog"

echo "The MagPi is great" | ./matrix4.py
cat poem.txt | ./matrix4.py

./matrix4.py <poem.txt

Python code

The sample code for this month is too long to
publish in the magazine, but you can download it
from http://w8bh.net/pi/matrix4.py. (You
may need to change the ORIENTATION
constant at the start of the file. Also, Model B
Revision 1 owners need to set
bus=smbus . SMbus (@) near the end of the file).

Conclusion

This concludes our mini-series on the Pi Matrix.
As an exercise try to display Conway's "Game of
Life" on the Pi Matrix. Have fun!

Raspberry Pi media centre (5)

Pumpkin Pi - get ready for Halloween (6)
Arduino and Raspberry Pi (7, 8, 15, 16)
Home automation (8)

SD card backup (9, 10)

RISCOS (9, 11, 13, 15)

Minecraft programming (11)

Printing with the Raspberry Pi (11, 12)
Operating Systems (12)

Raspberry Pi camera module (14, 15)

C(3,4,5,6,9,13)

C++(7,8,10)

Python (1, 2, 3,4,5,6,7,8,9,10, 13, 14)
Scratch programming for kids (1, 3, 4, 5, 13)
Ada (6, 8)

SQL (8)

Charm (10, 11, 14)

Java (14, 16)

http://w8bh.net/pi/matrix4.py
http://www.themagpi.com

Raspberry Pi In Easy Steps
Mike McGrath
In Easy Steps

Raspberry Pi in easy
steps does exactly
what it says on the
tin. As part of the
Easy Steps series of
how-to guides this
book offers a great
step-by-step

introduction to the
Raspberry Pi.

It contains nine chapters of high-quality,
illustrated, full-colour pages. It covers everything
from purchasing and setting up the Raspberry Pi
all the way through to programming in Scratch
and Python, developing your own games and
applications and controlling the GPIO pins.

Raspberry Pi in easy steps is written in plain
English which provides a jargon-free and fun way
to find your feet in the exciting world of
Raspberry Pi. This clear and easy to follow guide
provides a great foundation for new users and
those wishing to further their knowledge of this
fantastic little computer.

Each chapter includes a number of useful
pointers under the headings ‘Hot Tips’, ‘Beware’
and ‘Don’t forget’ - these break down key
information into easily digestible bite-size
chunks. They provide handy tips to spice up your
learning, flag something to remember or ward
you away from potential dangers.

This book is a clear and fuss-free introduction to
the Raspberry Pi - it is great value for money and
is suitable for adults and children alike.

The MagPi and Bookaxis are pleased to offer readers a 40% discount. To claim,
order from www.bookaxis.com/magpi and quote promo code MAGPI16.
Please note: this discount is only valid from the 1st to the 30th September 2013 on the two book titles listed here.

Python for Kids
Jason R. Briggs
No Starch Press

Python for Kids is another fantastic volume from
No Starch Press - the publishing company which
label themselves ‘The Finest in Geek
Entertainment’. Python for Kids certainly lives up
to their reputation as this book provides a
refreshingly fun and engaging platform for
children to learn about programming.

Having said that, despite its title and obvious
target market (the young!) - the quality and
technical depth of this book provides a playful
introduction to programming to readers of any
age.

Starting with basic theory and fundamentals and
moving quickly on to creating your own computer
games this book is your ticket into the amazing
world of computer programming! Each chapter
contains a number of fantastic programming
puzzles designed to stretch your brain and
strengthen your understanding.

Python for Kids puts the fun back into
programming and brings Python to life. By the
end of this book you will have gained a strong
understanding of this powerful and expressive

programming > :
language. P Y T H o N
FOR KIDS

There is even
A Playful Introduction to Programming

a companion
website to
support your
learning, where
you will find
downloads for
all of the
examples in
this book,
solutions and
additional

programming
puzzles.

JASON R. BRIGGS

Bought a Raspberry Pi and wondering what to do
with it? This book provides the answer.

0

http://www.bookaxis.com/magpi

The Raspberry Pi is helping millions of kids write their first

Phéht ' hetto wortd.

We'd like to thank you for
making cool projects,
spreading the word,

...and also for buying sweet, sweet swag

Your generous support helps us do more*

http:/swag.raspberrypi.org

AUTHENTIC 3

! INCE 12
f ’ EpUCAT‘NC'S
»

% 7‘ ’ i . *Hello World is alright, but we've got to teach kids “20 GOTO 10" as well
> w
e

http://swag.raspberrypi.org

DIFFICULTY : BEGINNER

The Pi-Lite is a versatile, plug and play, 126 LED
(9x14 Grid) matrix display for the Raspberry Pi.
Each pixel is individually addressable - so you
can display scrolling text, graphics and bar
graphs; basically anything that can fit in 126
pixels! It's a great starting place for doing
something visual with your Raspberry Pi.

The Pi-Lite comes as a complete, fully
assembled board that requires no soldering and
it’s designed to plug straight into the Raspberry
Pi’'s GPIO ports. The matrix is controlled by an
on-board ATMega 328 processor with pre-
loaded software and works equally well with a
Raspberry Pi using GPIO or with a PC, Mac or
Linux machine via the on-board FTDI connector.
You'll find a short beginner’s guide to set the Pi-
Lite up on the Raspberry Pi below.

Step 1 - setting up the Raspberry Pi
for basic Pi-Lite functions!

The Pi-Lite is as Ciseco product, so requires a
custom Wheezy Image to be loaded onto an SD
card and used for this task. This image has
reconfigured GPIO pins for serial access and the
Minicom terminal emulator that’s used to send
and receive characters from the serial port is pre-
installed. You can set all this up manually on your
version of Raspbian; however for ease of this

A plug and play LED matrix
board for the Raspberry Pi

THE PI-LITE
Get yours today from ModMyPi

Jacob Marsh

ModMyPi

tutorial we’ll use the custom image which can be
downloaded at the following link:

http://openmicros.org/Download/2013-05-25-
wheezy-raspbian-ciseco.img.zip

Simply unzip the image and load it onto an SD
card like the standard Raspbian distribution.

Step 2 - the fun stuff!

Make sure your Raspberry Pi is switched off and
then plug the Pi-Lite in. It sits on top of the GPIO
ports within the footprint of the Raspberry Pi and
fits neatly inside a ModMyPi case. Boot your
Raspberry Pi up, log in and you’ll be presented
with the Raspberry Pi command line. The Pi-Lite
will also auto-boot with a very cool sequence!

To access the Pi-Lite module via Minicom and
send scrolling text messages, enter the
command:

minicom -b 9600 -o -D /dev/ttyAMAQ

Now, simply by typing, you can send any text to
the Pi-Lite which will be scrolled across
automatically. It's also possible to enter
Minicom’s command mode to change various
settings, such as the scroll speed or pixel state.

2

https://www.modmypi.com/pi-lite-raspberry-pi-led-matrix
http://openmicros.org/Download/2013-05-25-wheezy-raspbian-ciseco.img.zip

To enter command mode type $$$ (three dollar
signs) - which will stop all scrolling and Minicom
will respond with “OK”. All commands must be
sent as one string in UPPER case and
terminated with a carriage return (pressing
enter). After receiving and carrying out a
command the Pi-Lite leaves command mode and
returns to scroll mode. If a command is not
received within a few seconds or a command is
inputted incorrectly, the command control will be
terminated and the Pi-Lite will return to scroll
mode.

As an example, we’ll increase the scrolling speed
using the SPEED command. By default the scroll
speed is set to 80, but it can be set anywhere
from 1 (very fast) to 1000 (very slow). Let’s slow
our scroll speed - simply type:

$$$SPEED200

Then hit enter. The Pi-Lite will automatically exit
command mode and re-enter scroll mode. You
can now check to see that your scroll speed has
increased!

There’s a full list of commands, as well as the
example scripts utilised in Step 3 below,
available at the following link. You’ll need these
to show bar graphs, turn on/off individual pixels,
and generally make your Pi-Lite function:

https://www.modmypi.com/pi-lite-raspberry-
pi-led-matrix

Step 3 - running scripts!
What's great about the Pi-Lite is that it enables

you to run custom Python scripts and
subsequently show graphics, repeated text

strings, read the weather, run a real-time Twitter
feed or display anything else you can imagine! I'll
show you how to download and run some
example Python scripts, but you can always edit
them or write your own if you’re feeling

adventurous! Please note, use upper case in the
commands where stated.

The Ciseco Wheezy image will already have a
suitable version of Python installed. However,
you’ll also need to install the “Git Control
System” and the “Python Serial Package”:

sudo apt-get install git
sudo apt-get install python-serial

We now need to pull the library files from Github
and put them in a directory. First ensure you are
in your home directory by changing directory to
the standard home location:

cd /home/pi

Then create a directory for the Github example
files and browse to it:

mkdir git
cd git

Now obtain the Pi-Lite source code. This
includes the Python examples:

git clone
git://github.com/CisecoPlc/PilLite.git

You can now browse to the example scripts:
cd PilLite/Python_Examples

Some of the scripts can be run straight from the
command line via Python (CTRL+C will
terminate). For this example we’ll run the
Pacman example script, which displays (you
guessed it) Pacman on the Pi-Lite!:

python Pacman.py
As with all Raspberry Pi projects - the best way

to learn is to play and a great place to start is the
Pi-Lite!

http://www.modmypi.com
http://www.modmypi.com
https://www.modmypi.com/pi-lite-raspberry-pi-led-matrix

s

o

DIFFICULTY : ADVANCED

Last month's Arduino - Raspberry Pi usage article
introduced the option of directly connecting to, developing,
and running an Arduino from the Raspberry Pi. This opens
the door for many usages that would not otherwise be
available
Bringing different technologies together in this way enables

Similar to joining the

running either of the platforms singularly.

wider capability in a system.
Raspberry Pi and the Arduino, it is possible to connect
many more technological standards to the Raspberry Pi to
enable an electronic smorgasbord of functionality. There
are so many different electronics standards, interfaces,
and processing architectures, and now there’s a way to
use them together with the LOGi-Pi.

The sea of electronics

We work in a sea of continually expanding electronics
boards and modules. Never has there been such an
opportunity to work with so many different varieties of
modules and processing architectures. There has been an
explosion of different electronics options for electronics
modules from parts and connectors below .4mm pitch all
the way up to the long used standard of 2.54mm pitch.
There is the Arduino platform and shields, the Raspberry
Pi platform and Plates, the Digilent Inc PMOD modules
and Xilinx’s high performance FMC expansion module
standard and many more. Each of these standards has a
myriad of off-the-shelf electronics plug in modules that can

A

N
-II
Y

Raspberry Pi meets FPGA

22T NN LV o

LOGI-PI
SPARTANG FPGA board

b P R

Michael Jones

Guest Writer

be plugged into the corresponding family of development
boards enabling the platform to be used in a wide range of
different applications. These standards were initially
developed to meet the specific needs of the corresponding
family only. What if all of these modules could be used by
a wider audience and could be used on many different
development platforms? The potential for uses and
applications would go up exponentially. What if these
different module standards could be not only with well
known CPU platforms, but with FPGA platforms as well?

What if all of these technologies could be used together?

FPGA technology - Parallel
processing

FPGA technology is highly contrasting to the more well
known and widely used CPU technology. There a few key
differences between the two. At the low level, FPGAs are
made of transistor configurations that make up logic gates
that combine to make combinational logic or flip flops that
can then combine to make up register transfer logic (RTL)
and the hierarchy and abstractions keeps going up from
there. These combinations and abstractions are put
together to create CPUs, custom hardware processing
modules that are found in ASICS and/or the combination of
the multitude of integrated circuits found on the market
today.

g

& Ta

FPGAs are similar to CPUs in that they are able to process
data. If a CPU needs to handle tasks A, B and C, the it
would typically start with task A and move through task B
and C in a linear fashion to finish the tasks. As the CPU is
given new tasks, the tasks are added sequentially and are
The CPU may
become loaded with too many tasks or tasks that take a

processed until they are all finished.

large number of instructions to complete, slowing down the
processing or causing errors. This often happens, for
example, in real-time systems. The solution would be to
either remove some of the tasks or use a faster processor.

If an FPGA had the same tasks, A,B,C, the tasks could be
constructed so that each task was being processed at the
same time or in parallel. Any new tasks are also
processed in parallel so no additional time is required for
the additional processing. Tasks can continue to be added
as long as there is enough logic within the FPGA. This
example is not to show that FPGAs are superior to CPUs,
but to show that the two technologies operate very
differently. Both are very good at doing what they do in
their respective applications. The FPGA ability to have new
functionality added to it without affecting the performance
of other functionality makes it great for applications that
require flexibility. The complementary nature of operation
between CPUs and FPGAs is also the reason that they
work very well when used with each other. When used
together, these qualities of the CPUs and FPGAs
complement each other and deliver outstanding results.

FPGAs are Logic Fabric - FPGAs are
like a Chameleon

FPGAs are widely used in the electronics industry because
of their unrivaled ability to be fully reconfigured to support
any number of contrasting applications while not requiring
any modification to the PCB hardware or design. FPGAs
are commonly referred to as “logic fabric”. This term
implies that the logic fabric can be modified, cut, pieced
and applied in many different configurations to create
customized applications that otherwise might require the
design and fabrication of an ASIC (very expensive); or by
using a mixture of different discrete logic and/or processing
solutions. Many times FPGAs are used in designs
knowing that the design requirements will change and the
FPGAs would need to be updated to meet the changes

without modifying the existing board hardware. The only
change that would be required is for new HDL code to be
written and loaded into the FPGA, assuming the inputs and
outputs have not changed. In this way, FPGAs are like a
chameleon, taking on new colors or disguises to adapt to
changing environments.

Introducing the LOGi-Pi

The LOGi-Pi is a member of the LOGi Family of FPGA
development boards. It was designed as a solution that
unifies the wide range of electronics that are currently
available on the market. The LOGi-Pi was designed to
provide a plug-and-play experience that supports the most
widely used electronics module interfacing standards. This
allows the maximum number of off-the-shelf hardware
modules to be directly compatible in a plug-and-play
manner with the LOGi-Pi. The LOGi-Pi has drivers and
applications that create a seamless solution for users who
want to use an FPGA, high performance processing CPU.
and a multitude of available add-on modules.

Maximum Interfacing Compatibility
with existing modules

The LOGi-Pi seeks to allow as much plug-and-play
expansion to existing available hardware as possible by
using widely available and low-cost, off-the-shelf hardware.
PMODs and Arduino Shields were chosen to be used as a
standard interface, based on their wide market usage,

T ()

availability, and cost. There are currently 59 PMODs and
281 Arduino Shields available that could be used to add
direct functionality to the LOGi-Pi. Additionally, high
bandwidth SATA interconnects implementing impedance
controlled LVDS lines can be interfaced. By using LVDS,
such applications as HDMI, SDR, LVDS camera
interfaces, and other high bandwidth applications can
easily be developed on the LOGi-Pi. All applications are
intended to be implemented without needing soldering,
jumper wires, or “perf” board expansion as is generally
required to interface to many existing FPGA boards.

High Performance Applications

The LOGi-Pi was designed to allow implementation of
many high performance applications in a straightforward
manner. Many popular applications are best served by the
processing capabilities of an FPGA, including SDR
(Software defined Radio), quad-copter control, computer
vision, and bitcoin mining. Applications have been created
for the LOGI-Pi that implement machine vision, and bitcoin
mining, and autonomous vehicle controller using GPS, 9-
axis IMU, WIFI, and machine vision to run blob detection
and color detection algorithms. These applications are
representative of a few of the applications that can be
developed by using off-the-shelf components and
integrating high performance CPU and FPGA technology.

Beginners to experienced FPGA
developers

The LOGi-Pi was designed to give beginners an easy way
The LOGI-
applications are all open source and are available on

to delve into advanced applications.

github. The applications are organized in such a way that
the user will simply need to have git installed on their
Raspberry Pi, pull the latest pre-built applications, plug in
the hardware modules, including the LOGi-Pi, and then run
a shell script that will load the bitstream into the FPGA,
setup any needed Raspberry Pi drivers and software, and
run the application. The source code is completely open
for customizations for those who are interested in getting
into the nuts and the bolts of how the applications run.

No matter your experience level, there are fun applications
to delve into that use the wide array of available

electronics. Let the LOGI-Pi be your gateway into
exploring the latest technologies in creating fun, high
performance, easy to use applications. Watch for guides
in the coming months that walk through the process of
using the LOGi-Pi in conjunction with the Raspberry Pi to

create these highly functional applications.

You can find information relevant to the LOGi-boards on
the logi-blog [1], logi-wiki [2] or logi github repository [3].
Do you have a great idea for a cool project you would like
to implement using a LOGi-Pi? We just started the LOGi
Contest which will get a free board if your ingenious project
idea and plans for implementation are selected as a
winner by the LOGi-Team [4]. Want to get involved? We
would love to have the help of anyone interested that has
some basic skills in HDL and programming (C, C++,
python,etc). Want to meet the mad geniuses behind LOGi-
projects? Meet Jonathan Piat, principal developer, and
the LOGi-Team [5]? Email us with any feedback thoughts
or suggestions [6].

[1] http://valentfx.com/logi-blog

[2] http://valentfx.com/wiki

[3] https://github.com/fpga-logi

[4] http://valentfx.com/logi-blog/item/logi-contest

[5] http://valentfx.com/logi-blog/category/logi-team
[6] support@valentfx.com

)

The No.1 Store for ALL Your Raspberry Pi Needs

$D Cards | Power Supplies | WiFi | Cases | GPIO | XBMC Kits

www.ThePiHut.com

http://www.thepihut.com
http://phenoptix.com

EEes awa BTEE USB ARDUINO LINK
' - ,ﬂ £ — - Add analogue ports to your Raspberry Pi
)l:-ﬁiii-u%-- ’ y "

os’luulu_-r#" =
o% s - :

Using a liquid crystal display Pl X" L
and Arduino analogue pins Tony Goodhew

DIFFICULTY : INTERMEDIATE

Guest Writer

USB Arduin link - Part 2

1 GND GND

Last month | wrote about how to set up your
Py 2 Vg5V 5V

Raspberry Pi so that it could communicate with

an Arduino via a serial USB cable using Nanpy. 3 Contrast 10K ohm potentiometer
In this mode the Raspberry Pi is the master and wiper. Others to 5V & OV
the Arduino is its slave input/output board, 4 RS 7 # Not 12
providing protection and extra facilities for the 5 R/W GND

master. | listed simple Python digital input and

output programs using a button switch and an 6 Enable 6 #Not 11
LED to test the system. | hope you managed to 11 Data 4 5
get it working. | am now going into more detail 12 Datab 4
about driving a liquid crystal display and the 6 13 Data 6 3
analogue pins (A0 - A5) on the Arduino, which 14 Data7 >
can read voltages between 0 and 5 volts. .
15 Light+ve 5V
Using a liquid crystal display (LCD) 16 Light-ve ~ GND

The following program demonstates the
operation by counting up and down:

Our example uses a 5 volt 16x2 HD4470
compatible LCD (currently about £7 from
oomlout.co.uk and from other suppliers). For full
circuit information, visit:

It is very easy to control via the built in Nanpy
LCD library. When running Nanpy, pins 0 &1 of
the Arduino are used for communication with the
Raspberry Pi; so | connected my LCD to pins 2
through 7.

()

http://oomlout.com/parts/LCDD-01-guide.pdf

Reading analogue values

The Arduino has 6 analogue ports for reading
voltages between 0 and 5 volts with 10-bit
resolution giving values from 0 to 1023. The
second circuit from the left in the photograph in
the header of this article, between breadboard
columns 30 and 40, shows the simplest analogue
demonstration circuit. It uses a 10K ohm
potentiometer with the outer pins connected to
GND and 5 volts. The central wiper pin is
connected via the orange wire to pin A1 on the
Arduino. This pin is also called pin 15. (AO is 14,
Alis15...A5is 19))

The following code demonstrates how to read
analogue values in Python:

As you turn the spindle on the potentiometer the
values change within the range 0 to 1023.

You can connect many different components and
devices to the analogue pins: to read
temperatures, measure distances, etc.

Once you start building more ambitious projects
you will find that you can quickly run out of pins.
As you have seen, a liquid crystal display uses
up 6 of your digital pins. Imagine that you were
building a model lift. You need digital pins to
control the motor, an LCD and several LEDs.
You also need buttons to call the lift on each floor
and others in the cage. One trick is to use a
single analogue pin to monitor the 5 switches on
the panel in the lift cage.

The circuit below is shown in the photograph in
breadboard columns 42 to 61. It has five
resistors in series and five button switches
connecting the resistor junctions to GND. The
circuit is connected to Arduino pin A1 via the
yellow wire from the junction between the right
most resistors.

The circuit is shown below:

Here the 2K2 ohm resistor acts as a pull up
resistor to 5 volts. With no button pressed the
reading from the analogue pin is 1023. If the
button for floor 2 is pressed the junction is
shorted to GND and the reading changes to 0,
just like a digital switch. As each button is
pressed in turn, from right to left, the resistance
to GND increases (0, 330R, 1K1, 2K1, 5K4
Ohms) and the voltage at the main junction
changes. Unfortunately, resistors with the same
nominal value can vary significantly but still be
within their quoted tolerance. It is not really worth

)

trying to calculate the analogue value for the
other switches as each board will be slightly
different. It is much easier to re-run the last
program a few times with the yellow wire
connected to pin A1, press the buttons in turn
and record the values for each button. My values
are shown in the square brackets and listed in
the program.

There is usually at least one ‘difficult’ button
whose value oscillates between two adjacent
values. My reading for the ‘Close Door’ button
was either 490 or 489. This problem is easily
overcome by testing for a range between upper
and lower limits rather than a specific value.
There are very large gaps between the button
values leaving plenty of room for the ‘fudge
factor’.

For example: (value > 485 and value < 495)
rather than (value == 490).

Here is the basic code to read the switches:

This is an ‘endless loop’ program - lifts run all
the time. Stopping it with <CTRL>+<C> normally
results in a mess of red error messages. Notice
how this has been trapped, which results in a
‘clean’ termination.

Conclusion

You can contact me with any feedback,
suggestions or questions, via email at
arduinolink@gmail.com. | enjoy experimenting
with hacking projects and robots and hope to
encourage others to take up this great hobby
(especially in Leicestershire, where | taught
computing for 23 years. How about a Raspberry
Jam? Lancashire is doing so much more!).

Thanks again to Andrea Stagi for producing
Nanpy.

mailto:arduinolink@gmail.com

visirusoN 8 £

WURLD 'SMOST VERSATILE

GIRI

" Model 209
VACUUM
BASE PV JR.

Model 201
PV JR. 4

» Work-holding tools

for electronics projects

» Circuit board holders make
soldering easy & fun

» Versatile hobby vises

==

for any project

PARNAVISE

Innovative Holding Solutions

Model 207
. VISE BUDDY JR.

WWW.panavise.com

00 1 800 759 /535

7540 Colbert Drive « Reno = Nevada = 89511 = USA

http://www.panavise.com

Expand your P

Stackable Raspberry Pi expansion boards and accessories

O Pi

32 digital input/output channels for
your Raspberry Pi. Stack up to four 10 .
Pi boards to give you 128 I/0O channels. e E !

£16.99
RTC Pi

Real-time clock with battery backup
and 5V I2C level converter for adding
external 5V I2C devices to your

Raspberry Pi. EQ | 76
ADC P

8 channel analogue to digital converter.
I2C address selection allows you to add
up to 32 analogue channels on your

Raspberry Pi. ET 7 | 99
Com P

RS232 and 1-Wire® expansion board

adds a serial port to your Raspberry Pi.
|deal for the Model A to enable g
headless communication. s

£19.88

lBelectromcs UK www.abelectronics.co.uk

Win a selectilon of Raspberry Pi
expansion boards from AB Electronics UK

Enter our competition and you could win a

selection of Raspberry Pi expansion boards
including an 10 Pi, RTC Pi, ADC Pi and Com Pi.

For your chance to win visit
Visit our website for more information. www.abelectronics.co.uk/magpi/

http://www.abelectronics.co.uk
http://www.abelectronics.co.uk/magpi/

The MagPi What's On Guide

Want to keep up to date with all things Raspberry Pi in your area?
Then this section of The MagPi is for you! We aim to list Raspberry Jam events in your area, providing
you with a Raspberry Pi calendar for the month ahead.

Are you in charge of running a Raspberry Pi event? Want to publicise it?
Email us at: editor@themagpi.com

Cambridge Raspberry Jam

When: Saturday 21st September 2013, 12.30pm until 6.00pm
Where: Institute of Astronomy, Madingley Road, Cambridge CB3 OHA

This event is currently sold out but a waiting list exists. Further information available at
http://cambridgeraspberry-es2.eventbrite.com

CAS Teachers North London Hub Meet

When: Wednesday 25th September 2013, 3.30pm until 5.30pm
Where: Central Enfield City Learning Centre, 113 Parsonage Lane, Enfield, UK

A session for teachers to share their experience of using Raspberry Pi's. Further information:
http://pienfieldclc-es2.eventbrite.co.uk

At-Bristol Raspberry Pi Boot Camp

When: Saturday 28th September, 10.30am until 4.30pm
Where: At-Bristol Science Centre, Anchor Road, Harbourside, Bristol, BS1 5DB, UK

The event will include live demonstrations, workshops and hands on tutorial sessions. Sponsored by
ARM who will also be in attendance. http://pibootcampsept2013.eventbrite.com

The Raspberry Pi at CERN

When: Saturday 5th October 2013, 9.30am until 4.30pm
Where: CERN Microcosm, Route de Mayrin, 1211 Geneva, Switzerland

The event will include live demonstrations, motivational talks and a hands on tutorial session. Guest
speakers from Google and Ibisense will also be present. http://cern-raspberrypi.eventbrite.fr

http://cern-raspberrypi.eventbrite.fr
http://pibootcampsept2013.eventbrite.com
http://cambridgeraspberry-es2.eventbrite.com
http://pienfieldclc-es2.eventbrite.co.uk

FRESHLY ROASTED

A beginners guide to Java

The main goal of this second article is to give you more
elements of the Java programming language, so you'll be
able to write much more powerful programs. The first
article in the series appears in Issue 14. It might prove
helpful to read over the C cave articles too, since basic
Java syntax is in many cases the same as C.

In this article, | first explain in detail Java control-flow
statements. Then, | focus on numbers, strings, and
booleans, and | also include examples that combine them.
With all these new elements you can write complex logic to
your code. Well... let's go for it!

Control-flow statements

In the first article in Issue 14 we looked at two control flow
statements: if and while. | know you already know, but
let me remind you anyway. An if condition executes the
following statement only when the condition in between
parenthesis is true. For example:

if (a>3) {c=c+a; }

This example adds a to ¢, only when a is greater than 3.
The section in between the round parenthesis is called the
condition and must evaluate to true or false, i.e. it's a
boolean expression (I'll explain booleans later in this
article).

An if statement can, additionally, include a section to be

2 - Control flow and basic variables

DIFFICULTY : MEDIUM

Vladimir Alarcon
& Nathaniel Monson

Guest Writers

executed when the condition is false. For example:

if (score > 50) {
System.out.println("You won! :)");
} else {
System.out.println("You lost. :(");

}

The other statement we saw before was while. The
while statement executes the following statement zero,
one or many times, as long as the condition in it remains
true. For example,

int f = 10;

while (f < 20) {
System.out.println(f);
f++;

}

will print all the integer numbers bewteen 10 and 19. It
won't print 20, because at that point the condition will not
be true anymore. Ah... did you notice the fourth line? Good
catch! The two + signs after a variable increase its value.
That is a short way of typing:

f=f+1;
Similarly,
f--5

decreases the value of the variable by one and assigns the

G

result to the varaible. It is equivalent to:
f=f-1;

Now, let's look at the for statement. for is similar to a
while statement, but it combines the condition, the
starting point, and the change statement into one line. The
numbers between 10 and 19 can be also written using
for:

for (int f = 10; f < 20; f++) {
System.out.println(f);
¥

Compare both examples. Yes, | would agree that a for
statement looks more compact than a while. A while,
though, can be easier to read some times.

In a for, the section between parenthesis is divided in
three parts: the first one is executed only once when
starting; the second one is the condition to check on every
cycle; the third one is to be executed at the end of every
cycle.

Now open your editor and try the following program:

public class Countdown {

public static void main(String[] args)
throws InterruptedException {
for (int t = 10; t >= 0; t--) {
System.out.println("-> " + t);
Thread.sleep(1000);
3

System.out.println("-> Fire!");

}

Compile it using the javac command and run it using the
java command (see previous article for details). This
program will count down from 10 seconds down to zero
and then prints "Fire!". Do you see how the value of the
variable t changes? We use the double minus sign here to
decrease its value. Also, did you notice the line with
Thread.sleep(1000);? That line makes the program
wait for 1 second (1000 milliseconds) each time, so the
numbers don't show up all at once. To use the
Thread. sleep method, the for loop is within a throws
statement. Trust me on the throws statement for now; I'll
explain exceptions later on.

Challenge #3: Create a new program Countup. java that
will count from 1 to 20, using a one second sleep. Then
when reaching 15, show a message saying "Five to go...".

Last but not least, let's look at the switch statement. A
switch checks for the value of a variable and allows to
execute different code for different values of it. For
example:

import java.util.Random;
public class CardinalDirection {

public static void main(String[] args) {
Random r = new Random();
int dir = r.nextInt(4);
switch (dir) {
case 0:
System.out.println("North");
break;
case 1:
System.out.println("West");
break;
case 2:
System.out.println("South");
break;
default:
System.out.println("East");
break;
%
%

In this example, an integer number is randomly chosen
between zero and three (four possible cases). The
interesting part is that the number is not shown as a
number, but as a cardinal direction. Each case statement
specifies what to do if the variable has the specified value.
Please note that | don't use a case for the number three,
but | use a default statement. It's always a good practice to
use a default statement, so any unspecified value will be
shown anyway.

Well, that's it for now with control flow statements. Of
course there are other more exotic ones like continue
and do-while but they are less used and I'll leave them
for you to study.

Let's now move on to a totaly different subject.

A little bit about numbers

Sooner or later you'll need to do some maths, so here are
the basics. In Java every numeric variable must be
declared as one of the types built in the language itself.
Java provides four integer types (without decimal places),
two floating points (with decimal places) and two very high
precision types. When using numbers you need to declare
the variable once, and then you can assign a value to it.
For example:

int trees; // declaration
trees = 17665785; // assignment

You can assign and reassign the value of the variable
many times, but you must declare the variable only once.
These two lines can be combined as:

// declaration & assignment
int trees = 17665785;

By the way, did you notice the //? The double slash
allows you to write a comment. Anything in the line after it
is ignored by Java, so you can add notes or reminders.
These are typically very useful several months later, when
you need to look at your program and you don't remember
why you did something.

Now, if you want to use integer numbers you have four
options:

byte: -128 to 127
short: -32768 to 32767
int: -2,147,483,648 to 2,147,483,647
long: -9,223,372,036,854,775,808
to 9,223,372,036,854,775,807

You'll probably use the third one (int) most of the time,
unless you really need big numbers or small numbers. On
the other hand, if you want decimal numbers (floating
point) you have two options:

float: +£1.401298e-45 to #3.402823e+38
double: +4.94065645841246e-324
to +1.79769313486231e+308

Normally, if you want to do a lot of maths you will probably
prefer the type double (15-digit precision) over float (7-digit
precision).

The four maths operators are written as +, -, *, and /, and
you can use parenthesis to group sections as you need.
The following program shows examples of maths
operations:

public class Numbers {

public static void main(String[] args) {
int x = 5;
System.out.println(7 + x * 3); // 22
System.out.println((7 + x) * 3); // 36
System.out.println(7 / 3); // 2
// 1 (remainder)
System.out.println(1l6e % 3);
// 2.33333333
System.out.println(7.0 / 3.0);
System.out.println(3.14159265 * x * x);

Notice that multiplications and divisions have priority over
addition and subtraction, but these priorities can be
changed using parentheses.

Need more maths functions? Well, there is a class called
Math that provides many maths functions. For example a
more complex formula like: 1—2a3

NI—7
can be written as:

double f = Math.abs(1.0 - Math.pow(x, 3.0)) /
(4.0 / 3.0 * Math.sqrt(y - Math.PI)));

When dealing with floating point calculations make sure
that you write literal numbers with a decimal point: for
example, instead of 3 write 3.0.

The following program adds all numbers from 1 to 10 that
cannot be divided by 3:

public class Sum {

public static void main(String[] args) {
int total = 0;
for (int n = 1; n <= 10; n++) {
if (n%3!1=0) {
total = total + n;
}
}
System.out.println("Total: " + total);
}
}

@)

Running this program will show the numbers 1, 2, 4, 5, 7,
8, and 10, with a total of 37.

Challenge #4: Change the previous program to also skip
the numbers that can be divided by 4. With your change
the program should now show 1, 2, 5, 7, and 10, with a
total of 25. Tip: you'll need to add a second if statement.

If you are curious, you can find the full list of math functions
at:

http://docs.oracle.com/javase/7/docs/
api/java/lang/Math.html

But... what if 15 decimal places is not enough for you?
Well... BigInteger and BigDecimal come to the
rescue. These classes can handle very high precision. A
hundred decimal places, or a thousand, or a million if you
want. Really? Yes, of course! For example:

import java.math.BigDecimal;
public class HighPrecision {

public static void main(String[] args) {
BigDecimal a = new
BigDecimal("2.7182818284"
+ "590452353602874713526624977572"
+ "4709369995"); // 50 decimal places
BigDecimal b = new
BigDecimal("3.1415926535"
+ "89793238462643383279502884197169399"
+ "375105820974944"); // 60 dec. places
System.out.println("e*pi="
+ a.multiply(b));
ks

Run this program and see for yourself. You'll get at least 50
digits of precision with it.

A little bit about strings

You have seen strings many times so far in examples
given in these tutorials. A string is a sequence of letters,
numbers and/or symbols (all called characters). Usually
you see them as literals like "Hi John!". However, you
can use them in more complex expressions, to search
within them, to get sections of them, or when building
bigger strings from several parts. For example, the + sign
builds (concatenates) several strings into a single one, like
in the example below:

String qty = "50";
String message = "I found " + gty + " books.";

If you want to get a part of a string you use the
substring method. Every letter (character) on a string
has a position. The first one is 0, then 1, then 2 and so on.
For example, to get the word "house" (position 4 to 8 in
the following example) you'll write:

String line = "The house is blue.";
String word = line.substring(4, 8 + 1);

Now, if you want to find where the word "house" is in the
string you can use indexOf:

String line = "The house is blue.";
int position = line.index0f("house"); // 4
int red = line.index0f("red)"; // -1

Notice that indexOf is written with an upper case "0". In
the last case, the word "red" is not found in the line of text
and, therefore, Java returns -1.

Also, to get the length of the string you use the method
length() and to get a single character in a string you use
the method charAt() as shown in the following example
that prints a string letter by letter.

public class LetterBylLetter {

public static void main(String[] args) {
if (args.length == 0) {
System.out.println("Please type"

n

+ " aword.");
} else {
String word = args[0];
for (int 1 = 0; 1 < word.length(); i++){
System.out.println(word.charAt(i));
%
%
ks

Once compiled using javac, run the program specifying a
word you choose on the command line. For example:

java LetterBylLetter telephone

As | said in the previous article, the variable args
represents the parameters you type in the command line
("telephone" in this case). See how the program tells
you if you forget to type a word.

L))

If you look at the for statement it uses both methods to first
get the length of the string and then to get each character
one by one.

Anyway, strings have many more useful methods. The full
list can be found at
http://docs.oracle.com/javase/7/docs/api/
java/lang/String.html

Challenge #5: Change the previous program to show every
letter in upper case. Tip: once you get the whole word,
change it immediately to uppercase using one string
method. Look for this method in the web page shown
above.

A little bit about booleans

Booleans are variables that can only have two values: true
or false. They are very useful to use as indicators, or as
conditions used inside the if, while or for statements.
For example, let's declare a boolean variable;

boolean painted = false;

Now, if you want to, you can change the value as in any
other variable:

painted = true;

or you can use it in a while statement:

while (painted) {
// do something
}

You can make complex expression using booleans with !
(meaning NOT), & & (meaning AND), and || (meaning
OR). A ! returns the opposite of a value. An && returns
true only if both sides are true, and a | | returns true if
either side is true. For example:

boolean a = true;

boolean b = false;

boolean c = !a; // false

boolean d = a || b; // true

boolean e = a & b; // false

boolean f = (la && b) || a; // true

Also, numbers and strings can be compared to return a

boolean. That boolean, in turn, can be used as a condition
for an if, while or for, as you may have noticed in
several examples before. For example:

int total = 156;

if (total > 100) {
// do something

}

The section total > 100 is a boolean expression, since its
value as a whole is a boolean (either true or false). To
compare two numbers you can use six operands:

== is equal to
1= is different from

> is greater than

< is less than

>= is greater or equal than
<= is less or equal to

All of them return a boolean, and as such you can combine
them in any boolean operation as you wish. In the following
example:

int sides = 6;

boolean painted = false;

if (sides >= 4 && !painted) {
// paint it!

}

you can see a more complex condition.
A final note

| know | covered a lot of topics in this second article. It's a
little bit more complex than the first one, but my goal was to
give you as many tools as | could as soon as possible. With
them you can now write basic and not so basic programs.
You now have much more power in your hands.

On the next article we will cover Java methods, classes
and objects, as well as the extensive Java Class Library
included in Java ...and we'll write a program to generate a
random map.

(@)

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

RNAGRI

PLC suPPLIES

LIMITED

-

SEPTEMBER COMPETITION

N e it il

Once again The MagPi and PC Supplies Limited are proud to announce yet
another chance to win some fantastic Raspberry Pi goodies!

This month there is one MASSIVE prize!

The winner will receive a new Raspberry Pi
512MB Model B, an exclusive Whiteberry
PCSL case, 1A PSU, HDMI cable, 16GB
NOOBS memory card, GPIO Cobbler kit,
breadboard and jumper wires!

For a chance to take part in this month's
competition visit:
http://www.pcsishop.com/info/magpi

Closing date is 20th September 201 3.
Winners will be notified in next month's
magazine and by email. Good luck!

July's Winner!

The winner of a new 512MB Raspberry Pi Model B plus an exclusive Whiteberry PCSL case,
1A PSU, HDMI cable, 16GB NOOBS memory card, GPIO Cobbler kit, breadboard and jumper

wires is Ellis Howe (Peterborough, UK).

Congratulations. We will be emailing you soon with details of how to claim your prizes!

http://www.pcslshop.com/info/magpi
http://www.pcslshop.com

if [$var == 1]; then

cat /proc/cpu # Check the CPU type

elif [$var == 2]]; then
cat /proc/meminfo # Memory information else
date -1 # The current date

fi

3 - Strings & arithmetic operations

DIFFICULTY : INTERMEDIATE

W. H. Bell

MagPi Writer

Challenge solution between -4 and 4, in steps of @. 1.

Did you manage to solve the problem in Issue 127 String operations
Here is a solution:
While it is possible to use command evaluation and

#!/bin/bash . .
1n/oas sed to replace string elements, Bash also contains

failed=0

if [[$# 1= 4 I]; then functionality for some simple operations.
failed=1 #1/bin/bash

elif [[$1 != *"x"* J]; then with="avec"
failed=1

) str="Raspberry pi with Linux"
fi . str_fr="${str/with/$with}"
if [[$f°11ed == 111; then. . str_fr="${str_fr#Raspberry pi}"
echo "Usage: $0 <f(x)> <min> <max> <step> str_fr="tarte aux framboises$str_fr"

exit 1 str_fr="${str_fr%Linux}Raspbian"

fi echo "$str_fr"

fcn=%$1

min=$2 As for the previous examples, save the script in a
max=$3 text file and make the file executable. Then run the
step=%$4

script and look at the output. The first line of the

h EOF . . .
python <<E0 script defines a variable to hold the French word for

import math

from math import * with. Then the str variable is operated on by the
X = $min commands that follow. The ${//} command
while x < $max: includes the variable name, the string to remove, and

print "%d %f" %(x,$fcn) then the string to replace the former string. The string

X = X + $step

EOF to replace is optional. The command ${#}, takes the

variable name and then the string prefix to remove.
Try running the solution by typing, The command only removes the start of the string.
Next "Raspberry Pie" in French is appended to the
string str_fr. Finally, the suffix is removed using
This will print out the values of the square of x the ${%} command. The ${%} command takes the
variable name and then the string to remove. The

o)

./solution@@2.sh "pow(x,2)" -4 4 0.1

match is only made with the end of the string. Try
moving the echo command to an earlier line in the
script to see the effect of each step, or try to change
the commands themselves.

The Bash native string functions are rather limited,
but there are other functions available via expr that
can easily be added to scripts.

In this script, a space is used within the string to
encourage the correct use of quotes. The distro

#!/bin/bash

distro="Raspbian Linux"

search=" "

offset=$(Cexpr index "$distro" "$search™)
echo "String: \"$distro\""

echo -n "String length: ${#distro}"

echo ", found space at: $offset"

echo "Substring: \"${distro:$offset}\""

string is declared. Then the expr command is used
to search for the space within the string and find its
position. The return value from the expr command is
stored in the of fset variable. The offset and the
substring up to the offset is then printed, along with
the length of the string. Notice that the -n in the
echo command does not append a newline
character. More expr commands can be found in
the expr man page. Try typing,

expr man

to view the manual page. Type q to leave the manual
page.

Arithmetic operations

Bash provides simple integer mathematical
operations. These can either be directly accessed or
accessed through the 1et function.

#!/bin/bash
i=1

j=4
L=$(CH1*3))

echo $1i

In this example script, two integer variables are
defined. Then the value of 1 is incremented before it
is multiplied by j. Notice that integer mathematical
operations are within the $(()) brackets. The
operations will work as hoped with or without a dollar

sign in front of the variable names.

#!/bin/bash
a=3

b=2
c=$((%a/$b))
echo "$a / $b
c=$(($a*$b))
echo "$a x $b = $c"
c=$(($a+$b))

echo "$a + $b = $c"
c=$(($b-%$a))

echo "$b - $a = $c"

$c"

This time the script demonstrates the limitations of
integer operations by including a division. The
division rounds down, since the floating point part of
the number is lost. The behaviour is similar for the
let command:

#!/bin/bash
a=9

b=4

let a--

let "a*=2"
let "a/=b"
echo $%a

The let command uses variable names. When the
arguments are more complex, quotes are needed
around the arguments. The result is automatically put
back into the Bash variable.

If floating point numbers are required, the basic
calculator (bc) shell can be used to perform simple
calculations:

#!/bin/bash

radius="2.5"

pi="3.14159"

area=$Cecho "$pi*$radiusA2" | bc)
echo $area

Try using the bc manual page and test out some
more of the functions. If bc is not good enough, then
try some inline Perl or an embedded Python script.

Challenge problem

A program writes output files into different
subdirectories, but the output files themselves have
the same name. Write a program to rename the
output files using a number suffix.

DIFFICULTY : INTERMEDIATE

Introduction

This series of articles discusses the use of XML
in applications for the Raspberry Pi. Part One
introduced XML and the format of its data
structures. In Part Two we cover building and
parsing XML in Python, while in Part Three we
will show how XML is used as a communications
protocol for a client / server application,
RasPiConnect. RasPiConnect is an iPad/iPhone
app that connects and displays information for
any number of Raspberry Pi's via a defined XML
interface.

What do we mean by parsing?

Parsing refers to the syntactic analysis of the
XML input into its component parts in order to
facilitate executing code based on the result of
the analysis. In other words, the program is
"reading" the XML to find values that it is looking
for, paying attention to proper syntax and form.
XML syntax includes a nested hierarchy of
elements. This means that each level of the
hierarchy is included as a fully enclosed subset
of the previous level. In our example below, each
object <XMLCOMMAND> is fully enclosed
("nested") in the <XMLObjectXMLRequest>.
You can extend this nesting as far down as you
like. When you write parsing code this nesting
usually results in for loops in Python iterating

XML for the Raspberry Pi: Part 2

Guest Writer

through all the objects at a level in the hierarchy.

Options for Parsing XML in Python

There are many different packages for parsing
XML in Python. We wil be using
xml.etree.ElementTree. ElementTree is a simple
to use, fast XML tree library built into Python. It
is somewhat limited in features, but for
straightforward XML message parsing it is hard
to beat.

What do you need to know about ElementTree?
Very few commands are needed to parse simple
XML. These few will be illustrated below.

Python Example Code

import xml.etree.ElementTree as ET

incomingXML =

<XMLObjectXMLRequests>

<XMLCOMMAND>
<OBJECTSERVERID>W-1</0BJECTSERVERID>
<OBJECTNAME>StatusWebView</0BJECTNAME>
<OBJECTTYPE>1</0OBJECTTYPE>
<OBJECTID>7</0BJECTID>

</ XMLCOMMAND>

<XMLCOMMAND>
<OBJECTSERVERID>M-2</0BJECTSERVERID>
<OBJECTNAME>Processes</0BJECTNAME>
<OBJECTTYPE>64</0BJECTTYPE>
<OBJECTID>0</0BJECTID>

</ XMLCOMMAND>

</XMLObjectXMLRequests>"""

root = ET.fromstring(incomingXML)
print incomingXML

iterate through all the values

for element in

root.findall('XMLCOMMAND'):
print "XMLCOMMAND'

print "OBJECTNAME:',6\
element.find("'OBJECTNAME").text
print "OBJECTTYPE:',6\
element.find('OBJECTTYPE").text
print "OBJECTSERVERID:',\

element.find('OBJECTSERVERID").text
print "OBJECTID:',\
element.find('OBJECTID'").text

Setup the ElementTree data

After the import of the ElementTree code and
writing the XML to a string (note: You could be
reading this from a file or a web request), we first
set up the root of the XML hierarchy. The root of
this XML code is <XMLObjectXMLRequests>.

Iterate through the list

We know from looking at the XML file, that
<XMLObjectXMLRequests> consists of a
number of <XMLCOMMAND> objects. We use
a for loop to do this (each element inside the root
is a <XMLCOMMAND> object) using the
ElementTree command findall (finding all
XMLCOMMAND obijects in this case).

Parse the individual items

In the interior of the for loop, we now parse the
individual elements of the <XMLCOMMAND>
object. Here we use the ElementTree element
command with the text attribute. Note that the
<XMLCOMMAND> elements are not in the same
order! XML does not care if elements on the
same level are in any particular order.
Furthermore, it is not guaranteed that the first
<XMLCOMMAND> element will be the first one
retrieved by ElementTree.

Expected elements can be missing from objects.
In the case of missing elements in Python (using
ElementTree) you absolutely must use an if
statement to deal with the missing element. If you

do not then you risk causing a Python exception
when operating on the returned value as
ElementTree returns a None and not a valid
value. If you are using strings as values, you will
probably want to set your string variable to a ™
(empty string) rather than allowing it to be set to
a Python None. This is a very common mistake
in writing ElementTree code.

if (element.find('XXXX').text == None):

#do something

Uses for XML in Python programs

XML is used extensively in the software industry,
ranging from HL7 messages in Healthcare,
Simple Object Access Protocol (SOAP) for
client-server information exchange, and even
XML is used in Microsoft Word files. The key
advantages of using XML are cross system use,
readability, expandability and the ability to edit
the XML in a text editor.

Programmers often use XML to read and write
configuration files to the disk, speeding
debugging and development. This makes it
easier to set up test suites for programs as you
can read the same XML structures from the disk
as you would send across the Internet in a web
request. The expandability of XML allows you to
add new parameters and structures in your
Python programs while maintaining backwards
compatibility. Part Three of this series will show
how this is done in Python.

Conclusion

XML is wordy and as a result uses a fair bit of
disk space to store and memory to process. In
the Raspberry Pi world and across the Internet
this generally does not matter. However, in
microcontrollers such as the Arduino, RAM
memory space is at a premium, so a more
"dense" and simple protocol such as JSON is
more appropriate. If disk space is at a premium,
XML will compress extremely well because of all
the duplication of keywords and descriptions.

XML is easy to read, parse and debug for
beginners and seasoned programmers alike.

)

Feedbaék & Quesﬁon Te

Just received my magazines and
binder today. Wow! They are
beautiful. This whole project has
been great. | had selected the
Signature Kit and am | ever so
glad. The hardware kit came
some time ago and the whole
thing was top quality. It meant a
lot to have those books signed by
Liz and Eben. Congratulations for
a well executed project.

Tony Guerich

Just found @TheMagP1 - loads
of Raspberry Pi info, lessons,
resources and projects.

Jim Leese

| love The MagPi! | remember me
as a young nerd - | was reading a
technical magazine full of source
code, | learned a lot by copying
those sources.

Fabrizio

Just received my binder and
mags - they look great. Thanks for
all the effort you have put into this.
And you just know that we all
want Volume 2 now don't you :-)
Mark Pearson

| am enjoying the Raspberry Pi
and am trying to learn some

programming. | want to write my
own program with some graphics.
The MagPi is great - it has helped
me with my Raspberry Pi
experience.

ab

First | wanted to congratulate you
and the staff for putting together a
very well done publication. I've
downloaded each one and I'm in
the process of reading them along
side my Raspberry Pi and | do try
the programs that you have. Allin
all a great job and you've made it
easy for anyone to learn about the
Raspberry Pi.

| do have one comment though. |
still belong to the old school and |
like to print each issue out and
read it and make notes in the
margins. | like the colours
chosen, but would ask that you
reduce the amount of solid
colours especially the black bars
at the top and bottom of each
page. Having to print them only
uses up more ink which become
an expensive process for each
issue.

Richard

[ed:The PDF is a little expensive

on printer ink, so we have made
hard copies up to issue 9
available as bound magazines.
These are available from our
licensed retailers who are listed
on our website. We will be printing
issues 10+, but there is a large
workload involved in getting them
to a stage where they can be sent
to the printers, so we are slightly
behind.]

288 pages of goodness just
arrived! The mags look awesome!
Love the binder and stickers! It's
been a bit of a wait but it's
definitely been worth it! The whole
bundle is fantastic and the
magazine quality is perfect, they
look and feel like a premium
magazine you would buy from a
newsagents.

You can see right away the hard
work that has gone into these and
it is very much appreciated.

THANK YOU!! to
MagPi team!!

the whole

Time to crack on and start
reading!
Nial Pearce

