
IISSSSUUEE 1166 -- SSEEPP 22001133

AA MMaaggaazziinnee ffoorr RRaassppbbeerrrryy PPii UUsseerrss

hh tt tt pp :: // // wwwwww .. tt hh eemmaaggpp ii .. cc oomm
RRaassppbbeerrrryy PPii iiss aa ttrraaddeemmaarrkk ooff TThhee RRaassppbbeerrrryy PPii FFoouunnddaattiioonn..
TThhiiss mmaaggaazziinnee wwaass ccrreeaatteedd uussiinngg aa RRaassppbbeerrrryy PPii ccoommppuutteerr..

GGeett pprriinntteedd ccooppiieess

aatt tthheemmaaggppii..ccoomm

USB Arduino link

LLooggii--PPii FPGA

Pi Matrix

PATOSS

Pi-Lite

Bash

Java

XML

Skutter: Expanding

your senses with I2C

Two

competitions!

Win a 512MB

RaspberryPi

& interfacing

goodies

BIGGEST ISSUE YET!
44 pages of Raspberry Pi goodness

Ash Stone - Chief Editor / Administration / Layout

Aaron Shaw - Issue Editor / Layout / Proof Reading

W.H. Bell - Layout / Administration

Bryan Butler - Page Design / Graphics

Ian McAlpine - Layout / Testing / Proof Reading

Colin Deady - Layout / Proof Reading

Matt Judge - Website / Administration

Shelton Caruthers - Proof Reading

The MagPi Team

Sai Yamanoor - Tester

Claire Price - Layout / Proof Reading

Courtney Blush - Proof Reading

Amy-Clare Martin - Layout

Matt Weaver - Layout

Gerry Fillery - Proof Reading

2

16

Welcome to issue 1 6 of The MagPi.

I t's back... Skutter returns to the pages of The MagPi and this time it's more sensitive! Stephen takes

you in detai l through expanding the number of inputs and outputs which can be control led from your

Raspberry Pi using I2C. This wil l al low you to add more sensors to your bot whi le driving the base unit.

In this issue we have some great hardware projects l ike Jorge's PATOSS for monitoring his injured bird

and we learn how to scrol l text on the Pi Matrix.

We have more on connecting your Raspberry Pi to an Arduino in Tony's great article on driving a l iquid

crystal display plus an amazing look into connecting your Raspberry Pi to Logi-Pi by Michael Jones.

After al l that, we supplement the above with some fantastic software articles.

We are pleased to provide more on programming in Java by looking at control flow sentences,

numbers, strings and booleans with Vladimir. For the cherry on the cake we have more from Bash

gaffer tape and bui lding and parsing XML in Python.

Hope you enjoy the biggest issue of The MagPi to date.

Ash Stone

Chief Editor of The MagPi

3

4 SKUTTER I2C
Expanding your senses with I2C

1 2
The Pato survei l lance system

9
Part 4: Multiplexing and scrol l ing text messages

22
A plug and play LED matrix board

24
Raspberry Pi meets FPGA

28
USB ARDUINO LINK
Part 2: driving an LCD

32 AB ELECTRONICS COMPETITION
Win a selection of expansion boards

34
Part 2: Java control-flow statements, numbers, strings and booleans

44 FEEDBACK
Have your say about The MagPi

PATOSS

FRESHLY ROASTED

1 6

BOOK REVIEW

PI MATRIX

Raspberry Pi in Easy Steps and Python for Kids
20

THE PI-LITE

LOGI-PI SPARTAN6 FPGA BOARD

33
Cambidge, CAS North London, At-Bristol, CERN
THIS MONTH'S EVENTS GUIDE

39
Win a Raspberry Pi Model B and accessories
PCSL COMPETITION

42
Part 2: bui lding and parsing XML in Python
<XML />

Part 3: Strings and arithmetic operations
BASH GAFFER TAPE40

http://www.themagpi.com

ContentsContentsContents

http://www.themagpi.com

4

DIFFICULTY : ADVANCED

Stephen Richards

Guest Writer

Skutter - Expanding your
senses with I2C

Limitations of the GPIO

We all love the Raspberry Pi. For me the best

thing about it, apart from its low cost and low

power consumption, is the General Purpose

Input and Output header (GPIO). Having that

sort of access between the virtual and real world

on such a tiny yet powerful computer has al lowed

me to begin working on a robotics project which

unti l recently I was only able to imagine.

In spite of this, the Raspberry Pi does have some

limitations when it comes to bui lding robots. The

GPIO has only a l imited number of pins to work

with. Let's say you have bui lt two simple H-bridge

circuits to control motors on your robot. That

might take up as much as eight of your GPIOs.

Let's imagine you want to include some micro

switches on the gripper of a robot arm and some

more switches on the robot's bumper (or fender if

you are in the US) to detect col l isions.. . before

long we've got more inputs and outputs than

we've got pins! Things are only complicated

further when we consider that if we draw more

than 48mA in total from the GPIO at any point,

we run the risk of frying the whole thing!

Introducing I2C

So what is a robot bui lder to do? Happily there is

a solution to al l of this: something that throws

open the doors to a whole galaxy of wonderful

electronic devices and sensors. This solution is

cal led the I2C bus (often cal led the "two wire

interface") .

Some people pronounce I2C as "eye two see"

whi le others say "eye squared see"; either is

acceptable. One of the many avai lable devices

that use this is a "GPIO expander" such as the

MCP23008. [Ed: The MCP23017 which is used

in the Pi Matrix is the 16-bit version]. There are

many others also avai lable such as

"analogue to digital converters",

"accelerometers" and many more

which I wi l l cover later.

Using the I2C bus can be daunting at first. I2C is

unl ike USB. USB just seems to work because,

although highly complex, it is tightly control led

with a very rigid set of standards. The I2C bus in

comparison is much more of a free-for-al l .

Nevertheless it is extremely effective.

To work with this beast, first we need to

understand it. I t's known by the nickname "two

wire" because it uses two wires to communicate

between two or more devices. One of these

devices is known as the master with the other

devices known as the slaves. In most

5

conceivable situations the master would be the

Raspberry Pi.

A tale of two wires

On the GPIO header are two pins cal led SDA

and SCL. These two pins are the keys to opening

the I2C bus. SDA refers to Serial DAta and SCL

refers to Serial CLock.

The SDA is able to transmit a series of bursts of

eight 1 s and 0s (cal led a "byte") . These bytes of

data are sent along the SDA wire (bus) and are

received by all of the slaves on the bus. The

"clock" on the SCL wire is used by both the

master and the slaves to al low timings to

coincide with these 1 s or 0s.

For example, imagine if the byte sent across the

SDA bus from the master was "1 1 1 1 1 1 1 0". How

would the slave know that this was seven

separate "1 " bits or just one single "1 " bit that has

been turned on for a long time? The clock pulses

on the SCL bus allows the slave to know this.

When the master sends a byte down the SDA

bus, every slave on that bus wil l receive that

byte. "Addressing" ensures that the right device

actual ly uses it. When two devices communicate

over I2C they do so in a series of bytes. This

series of bytes is cal led a "message". A message

always begins with a special "start" sequence

and ends with a special "stop" sequence. This

start and stop sequence of bits cannot occur at

any other time.

After a start sequence, the next byte of

information is a seven bit address. A byte

contains eight bits and the eighth bit of the

address is used to tel l the slave device if i t is

going to be used to send or receive data.

Once the first address byte has been sent, only

the device with that corresponding address

continues paying attention to the rest of the

message. Al l the other devices stop paying

attention unti l the stop message sequence is

sent.

Disorganisation is the key to success

This seems logical so far, but now we get to the

disorganised part. The I2C protocol dictates what

the "start" message and "stop" message must be

and that the first byte of the message must be

the address of the slave device. After that there

are no rules at al l . Every different I2C device is

al lowed to use all the data between the address

and the stop message in any way it wants.

Before you can use an I2C device, you have to

study the documentation (cal led the data sheet)

for it to understand how it uses al l those bytes of

data.

In the rest of this article I wi l l provide an example

of this by working through the relevant parts of

the datasheet for the MCP23008 I2C 8-bit GPIO

expander, plus how to connect this to the

Raspberry Pi and how to write a simple Python

program to control i t.

Controlling the MCP23008

The MCP23008 is very useful to a robot bui lder

because it gives us a relatively simple means of

providing more inputs and outputs than the

standard GPIO and with more power avai lable.

As stated already, every I2C device works

differently. For this reason it is essential to obtain

a copy of the datasheet for the device you are

working with. To get the most from this article

download a copy of the MCP23008 datasheet

(http://ww1.microchip.com/downloads/en/Dev

iceDoc/21919e.pdf) . From here on in I wi l l be

referring to the "MCP23008/MCP23S08 8-Bit I /O

Expander with Serial Interface" published in

2007 by Microchip Technology Inc.

The first useful piece of information in this

http://ww1.microchip.com/downloads/en/DeviceDoc/21919e.pdf

6

datasheet is the pin out diagram on page 2.

Make sure you look at the pin out for the correct

device as several are shown. Using this diagram

we can begin to make sense of how we can

connect this microchip to our Raspberry Pi.

The first question is which way is "up" on our

microchip? If you look careful ly you wil l see a

small notch on one end of the device. This

signifies the "top".

The key here are

the first two pins on

the left hand side:

SCL and SDA.

These can be

connected to the

corresponding pins

on the GPIO of the

Raspberry Pi.

The next three pins

are A2, A1 and A0.

From page 5 these

are the address

pins.

On page 8 the datasheet states "The slave

address contains four fixed bits and three user-

defined hardware address bits". This means this

part of the address byte can be configured to

whatever we want. Let's assume we connect

pins A2, A1 and A0 to ground. This is equivalent

to making them 000. On the same page we are

given a diagram that shows that the first part of

the address for this device must begin with 01 00.

Our three pins set the second part of this

address to 000, therefore the address for this

device configured in this way would be

01 00000.

The very final bit in this address is used to

command the MCP23008 to work as an input or

an output. The diagram on page 8 of the

datasheet shows we must use 0 for write (output)

and 1 for read (input) .

The next pin along is cal led RESET. The pinout

description on page 5 declares this must be

biased external ly. For normal use you can get

away with just connecting this pin directly to the

positive (+ve) terminal of your power supply.

Power requirements

The other two real ly important pins are VSS and

VDD. VSS is ground and VDD is +ve power. (I found

that out by checking the pin out description again

on page 5 of the datasheet) .

Skipping along in the datasheet to page 23 we

find the electrical characteristics of the device.

From here we can see that this microchip can

run on 3.3V logic or 5V logic. Additional ly we can

see that the device can sink or source 25mA

from each GPIO up to a total of 1 25 mA.

Access to this extra power boost from the GPIO

is very useful. Not only does it give us more pins,

it supplies more power as well ! This is a great

advantage when bui lding a H-bridge motor

control ler, for example. I t also means we can use

much cheaper, lower valued, current gain

transistors than those that were necessary when

running one directly from the Raspberry Pi GPIO.

There is another important health warning to

consider here however. Although it is possible to

run this device on 3.3V or 5V, the Raspberry Pi

itself is not tolerant of 5V. Connecting this device

to a 5V supply and then trying to use your

Raspberry Pi to control i t is very l ikely to cause

terminal damage to at least the GPIO, if not the

whole Raspberry Pi! Happi ly it is possible to

convert the 3.3V logic of the Raspberry Pi to 5V

logic and let the two run safely together using a

simple logic level converter circuit. I wi l l describe

this circuit later on. For now I wil l explain how to

start using the MCP23008 with the Raspberry Pi.

Setting up the MCP23008 and RasPi

Start off by careful ly plugging the MCP23008

into a breadboard. You wil l see a "gutter" going

down the middle of your breadboard. This gutter

isolates the two halves of the breadboard from

7

each other. This means that you can plug in the

MCP23008 and know that you are not

connecting the pins on either side of the chip to

each other. The gutter also makes it easy to

remove a microchip. You can careful ly work a

small flat headed screwdriver under the chip and

along the gutter to l i ft the chip out without

bending al l the pins.

Before we can start using I2C on the Raspberry

Pi we need to make a few changes to some

configuration fi les (assuming you are using a

Raspbian distro). The I2C drivers are disabled by

default. Let's enable them. From the command

line, enter:

cd /etc

sudo nano modprobe.d/raspi-blacklist.conf

Look for the entry blacklist i2c-bcm2708 and

add a hash '#' at the beginning of the l ine so it

becomes #blacklist i2c-bcm2708. Press

<Ctrl>+<X> then press <Y> and <Enter> to save

and exit.

Next edit the modules fi le. From the command

line, enter:

sudo nano modules

Add i2c-dev on a new line. Press <Ctrl>+<X>

then press <Y> and <Enter> to save and exit.

Next instal l some tools and Python support. From

the command line, enter:

sudo apt-get update

sudo apt-get install python-smbus

sudo apt-get install i2c-tools

Now add the 'pi ' user to the i2c group. From the

command line, enter:

sudo adduser pi i2c

Final ly, shutdown your Raspberry Pi. From the

command line, enter:

sudo halt

Plug in the MCP23008

Connect the SDA and SCL on the MCP23008 to

the corresponding GPIO connections on the

Raspberry Pi.

Connect VDD and RESET on the MCP23008 to

3.3V power on the GPIO. Connect VDD on the

MCP23008 to Ground on the Raspberry Pi.

We are now ready to try a few experiments. Turn

on the Raspberry Pi.

From the command line, enter:

sudo i2cdetect -y 1

NOTE: Use 0 instead of 1 for the bus number in

the above command if you have an original

(revision 1) Raspberry Pi. The revision 1

Raspberry Pi does not have any mounting holes.

I f everything is connected up properly you should

see output something l ike the screenshot on the

next page.

8

This means the MCP23008 is communicating

with the Pi on address (hex) 0x20.

I f we want to use more power than the GPIO on

the Raspberry Pi can deliver there are a few

more steps we need to take first.

Converting 3.3V to 5V logic

Connecting VDD of the MCP23008 to 3.3V on the

GPIO of the Raspberry Pi means that the output

of this chip is sti l l affected by the GPIO power

l imitations. We can connect the device to the 5V

supply instead, however that means you are

mixing 5V logic with 3.3V logic on the Raspberry

Pi and it wi l l not take kindly to this!

The circuit diagram on the right shows a simple

circuit that can safely convert 3.3V logic to 5V

logic and vice versa. I t uses two MOSFETs. A

suitable MOSFET is the commonly avai lable

BSN20.

Be warned however that the BSN20 is a very

small device. To get it working I cut the tracks on

a small piece of stripboard, soldered the

terminals of the MOSFET across these and then

added some larger connectors to make it

suitable for plugging into breadboard.

The symbol used in the circuit diagram is not the

conventional MOSFET symbol. I have shown it

l ike this to help visual ise the way the l ittle device

should be connected.

The purple l ine signifies 3.3V from the GPIO.

This goes to the "Gate" on the MOSFET. The red

l ine signifies the 5V supply. This is connected to

the "Drain" of both of the MOSFETs via a "pul l

up" resistor. (In I2C the natural state of the bus is

"low". When a current is applied to the bus via a

pul l up resistor, i t temporari ly pul ls the signal up

to an "on" or "high" condition).

The value of the pul l up resistor is not that

important. I t's general ly agreed it should be

between 1 K and 1 0K. Many people use 4.7K and

report that it works well and this is the value I

used for my version of the circuit.

Final ly, we need to provide conversion from SCL

and SDA on the Raspberry Pi. These l ines

should be connected to the "Source" of the

MOSFET.

Everything on the right hand side of this circuit is

now a 5V I2C bus and everything on the left is a

3.3V I2C bus and the two can work safely

together in series!

9

Creating an example Python H-bridge
control program

We are now ready to control the GPIO pins 0 to 7

on the MCP23008. Looking at page 6 of the

datasheet we can see that the device uses a

number of internal registers to control everything

it is capable of. The only registers we are real ly

interested in are IODIR and GPIO. Nevertheless

it is important to set al l the other registers as well

to try to prevent anything unexpected happening.

Sometimes the language used in data sheets

can be confusing so I have tried to translate into

plain Engl ish the name, address and function of

each register and put it in the table on the next

page. I recommend reading the datasheet first

and then check your understanding. Being able

to read these documents is an important ski l l .

Register Address Description

IODIR 0x00 0 = out (write), 1 = in (read)

IPOL 0x01 Input / output polarity on GPIO bit 7 to bit 0. I f bit is set, GPIO value wil l reflect
the inverted value.

GPINTEN 0x02 Interrupt on change on bit 7 to bit 0. I f bit is set then it wi l l generate an interrupt
if that pin changes.

DEFVAL 0x03 Default value to compare against GPINTEN bit 7 to bit 0. I f bit is set, opposite
value on corresponding pin wil l generate interrupt.

INTCON 0x04 Interrupt control register. I f bit is set then corresponding IO pin wil l be
compared against the value set in the DEFVAL register.

IOCON 0x05 Setup: bit 5 = sequential operation, bit 4 = slew rate, bit 3 is not used, bit 2
open drain, bit 1 = sets polarity of INT pin. Only functions if bit 2 is clear.

GPPU 0x06 GPPU pull up resistor, bit 7 to bit 0. I f bit is set and pin is input then this wil l
pul l up the pin with 1 00k resistor.

INTF 0x07 Interrupt flag, bit 7 to bit 0. I f bit is set it means the associated pin wil l generate
an interrupt. A set bit tel ls us which pin caused the interrupt. READ ONLY.

INTCAP 0x08 Interrupt capture. Captures GPIO value at time of interrupt, bit 7 to bit 0.
Remains unchanged unti l interrupt is cleared via a read of INTCAP or GPIO.

GPIO 0x09 The GPIO, bit 7 to bit 0.

OLAT 0x0A Output latches.

Python code

The last Skutter article in issue 8 of The MagPi

included some simple Python code to control a

H-bridge motor control ler connected to the GPIO

on the Raspberry Pi.

The code on the next page wil l control two H-

bridge control lers connected to the GPIO's on an

MCP23008. (Don't forget to change the bus to 0

if you are using a revision 1 Raspberry Pi) .

Conclusion

I hope this wil l help you to begin to understand

how to control I2C devices and how useful they

can be to a robot bui lder. I f you find an I2C device

that can perform a vital function for a robot you

are bui lding, (such as an analogue to digital

converter, an accelerometer or a distance

sensor), hopeful ly you wil l now be able to read

through the datasheet and make sense of how to

control i t.

1 0

#! /usr/bin/python

import smbus import time
address = 0x20

Define all the registers
IODIR = 0x00
IPOL = 0x01
GPINTEN = 0x02
DEFVAL = 0x03
INTCON = 0x04
IOCON = 0x05
GPPU = 0x06
INTF = 0x07
INTCAP = 0x08
GPIO = 0x09
OLAT = 0x0A

bus = smbus.SMBus(1) # Change to 0 for revision 1 Raspberry Pi

Set IODIR as OUTPUT
bus.write_byte_data(address, IODIR, 0b00000000)

Reset all the other registers
for reg in [IPOL,GPINTEN,DEFVAL,INTCON,IOCON,GPPU,INTF,INTCAP,GPIO,OLAT]:

bus.write_byte_data(address, reg, 0b00000000)

Set the GPIO's to turn on/off transistors in H-bridge. See circuit diagram.
#GPIO 0 - 1 = motor 1 fwd.
#GPIO 1 - 1 = motor 1 fwd.
#GPIO 2 - 1 = motor 1 rev.
#GPIO 3 - 1 = motor 1 rev.
#GPIO 4 - 1 = motor 2 fwd
#GPIO 5 - 1 = motor 2 fwd
#GPIO 6 - 1 = motor 2 rev
#GPIO 7 - 1 = motor 2 rev

#----------------------------- IMPORTANT --------------------------------------
IF GPIO 0, 1 is "1" THEN GPIO 2, 3 must be "0" ELSE transistor short circuit.
IF GPIO 4, 5 is "1" THEN GPIO 6, 7 must be "0" ELSE transistor short circuit.
#--

Set all GPIO off
bus.write_byte_data(address, GPIO, 0b00000000))
Test motor 1 and motor 2 FWD for 3 secs
bus.write_byte_data(address, GPIO, 0b00000011))
time.sleep(3)
Set all GPIO off
bus.write_byte_data(address, GPIO, 0b00000000))
time.sleep(1)
Test motor 1 and motor 2 REV for 3 secs
bus.write_byte_data(address, GPIO, 0b00001100)
time.sleep(3)
Set all GPIO off
bus.write_byte_data(address, GPIO, 0b00000000)
time.sleep(1)
Test hard right turn for 1 sec
bus.write_byte_data(address, GPIO, 0b11000011)
time.sleep(1)
Test hard left turn for 1 sec
bus.write_byte_data(address, GPIO, 0b00111100)
time.sleep(1)
Set all GPIO off
bus.write_byte_data(address, GPIO, 0b00000000)

http://shop.pimoroni.com

1 2

DIFFICULTY : INTERMEDIATE Jorge Rancé

Guest Writer

The Pato surveillance system

At the start of July my friend and I came across a

bird in the street that had apparently sustained

an injury to his leg. We took the bird, later

named Pato, to the vet for review. I t was

reported by the doctor that Pato had a broken leg

- this required plastering and Pato needed a lot

of TLC for a week.

As I do not spend a great deal of time at home

the idea of setting up a system in order to

monitor Pato was posed. As my occupation is a

System Engineer for Linux / Unix systems, I

though it wouldn’t be so difficult to set-up a

monitoring system by using a Raspberry Pi

board and some sensors in order to monitor Pato

via the internet. Thankful ly I had a spare

Raspberry Pi lying at home and so I got to work.

What to monitor and how to do it

The system I would create had to be able to

send a current picture from Pato’s cage, check

the temperature of his environment and control

the water level. In order to meet these goals I

used a webcam for the pictures, a thermometer

for the temperature and a liquid level sensor for

the water level.

Taking pictures

To set up the webcam was quite straightforward.

After plugging it into the USB port and powering

up the Raspberry Pi, I ran 'lsusb'. This command

checks to see what USB devices the system

detects and recognises. In my case the webcam

was properly detected as:

pi@raspberrypi ~ $ lsusb | grep C270

Bus 001 Device 006: ID 046d:0825 Logitech, Inc.

Webcam C270

pi@raspberrypi ~ $

Once the webcam was properly detected, I had

to enter some simple commands to instal l and

configure motion:

sudo apt-get install -y motion

1 3

After instal lation had completed, before starting

the webcam, I had to modify three parameters

inside /etc/motion/motion.conf - giving them the

fol lowing values:

Daemon = OFF to ON

webcam_localhost = ON to OFF

start_motion_daemon= "no" to “yes”

With those changes made I then ensured that the

Raspberry Pi was streaming video by entering

the fol lowing into a browser:

http://192.168.x.x:8081

(Where x.x should be altered to match the end

numbers from your IP address which you can

find by typing ifconfig into a terminal window.)

Monitoring the temperature

In order to check the temperature of Pato's

environment, I bought a USB Temper

thermometer via eBay. I t required more work

than the webcam to get working.

First, I had to ensure al l the necessary

dependencies were instal led. This was

completed using the fol lowing command:

sudo apt-get install -y build-essential libusb-

1.0.0 libusbdev

The latest version can be cloned from the temper

binary via git:

git clone

https://github.com/bitplane/temper.git

Once downloaded it can be compiled with:

cd temper/make

And then, the new binary must be run using:

sudo ./temper 16-Jul-2013 00:02,26.089081

I prefer to get rid of the date and time. This can

be done using the fol lowing script:

TEMP=`sudo /home/pi/temper/temper | awk '{

print $2 }' | cut-d, -f2 | cut -c1-5` echo

"$TEMP'C"

This must then be run using the command:

pi@raspberrypi ~ $./temperatura.sh 25.63'C

Reading the liquid level sensor

I had recently bought a PiFace board and felt

that this would be a good opportunity to use it for

the first time.

I t couldn’t be easier. The l iquid level sensor was

connected to digital input zero. In order to check

if there's water or not, I ran the fol lowing script.

I f there's enough water, i t would return 1 :

import piface.pfio as pfio

pfio.init()

print pfio.digital_read(0)

And then, run it!

pi@raspberrypi ~ $ python boya.py 1

Sending tweets from the Raspberry Pi

Once everything was set up from the software

http://youtu.be/GImeVqHQzsE

1 4

and hardware point of view, now was the time to

find out how to send tweets.

I did open a Twitpic account in order to make

things easier, so it just had to send an e-mail with

an attached picture and the information I wanted

to be posted. In order to do that I wrote a real ly

simple script:

#!/bin/sh

CPUTMP=`/home/pi/cpu_temp.sh`

ENVTMP=`/home/pi/temperatura.sh`

LIQUID=`python /home/pi/boya.py`

if [${LIQUID} -eq 1]; then

elif [${LIQUID} -eq 0]; then

fi

SUBJECT="RPi temp: ${CPUTMP}. Room temp:

${ENVTMP}.

${AGUA}. " echo "" | mutt -a

/tmp/motion/patoss.jpg -

s "`echo ${SUBJECT}`" -- xxxx@twitpic.com

And this is what is being posted on Twitter:

AGUA='Water level OK'

AGUA='Pato needs water'

Well that concludes the project! I am pleased to

write that Pato is doing very well and I can work

away from home, safe in the knowledge that he

is well looked after.

http://milocreek.com

1 6

DIFFICULTY : MODERATE

Bruce E. Hall
W8BH

Guest Writer

PI MATRIX
Control an 8x8 matrix of 64 LEDs

Part 4: Multiplexing and
scrolling text messages

Introduction

Previously we looked at how to bui ld the Pi

Matrix and how to drive its 1 6 pins. But 1 6 pins

cannot completely address al l 64 LEDs at the

same time. We wil l talk about multiplexing and

learn how to scrol l text characters across the

display, bui lding on sample code from before.

Multiplexing

So far al l of our display routines have involved

turning on a number of LEDs in a row and

repeating the same pattern over any number of

rows. But for some applications this is not

enough. Suppose we need to turn on 3 LEDs in

row 1 , a different number of LEDs in row 2 and

yet another pattern in row 3. We wil l need this

capabi l i ty if we want to display complex symbols

on the display, l ike text characters. We need

multiplexing.

With multiplexing we do not display al l the rows

at the same time; we display them sequential ly.

For each row:

Display pattern #n on row #m

Wait a few mil l iseconds (at most)

I f we do this fast enough our eyes are tricked into

thinking that al l of the rows are being displayed

at the same time (aka persistence of vision). We

must refresh the entire display at least 30 times

per second, which means that we cannot spend

more than about 4 mil l iseconds on each row. As

Python does not run too quickly on the Raspberry

Pi the wait between rows can be omitted. The

fol lowing simple routine wil l do al l the

multiplexing we need:

def MultiplexDisplay(z, speed):

for count in range(0, speed):

for row in range(0, 8):

SetPattern(1<<row, z[row])

The variable 'z' is a l ist of 8 elements with each

element holding a row pattern. z[0] holds the

pattern for row 0, z[1] holds the pattern for row 1 ,

etc. The whole display is refreshed (speed)

times giving the user enough time to view and

interpret the display.

Puppies and fonts

I thought it would be interesting to draw some

characters on the Pi Matrix but my 9 year old

daughter had a different idea... puppies! She

pul led out some graph paper, asked me to draw

the right-sized box and then proceeded to shade

in the squares of her puppy dog design. She

handed the paper back to me and waited for me

to put her design on the Pi Matrix. Let’s do it!

1 7

Starting with the top row, we see that only bit 2 is

l i t. For this we need binary 000001 00, which is

0x04. In the next row, we have bits 1 and 2,

which is 0x06. Here are the values that we wil l

need for al l eight rows: 0x04, 0x06, 0x27, 0x44,

0x3C, 0x3C, 0x24, 0x24. That’s our l ist input for

the routine:

def DisplayPuppy():

z = [0x04, 0x06, 0x27, 0x44, 0x3C,

0x3C, 0x24, 0x24]

MultiplexDisplay(z, 100)

After this success I was encouraged to tackle the

alphabet. A quick internet search for 8x8 fonts

gave me exactly what I needed; 1 28 characters

in ASCII order, encoded as 8 rows of 8 pixels

(bits) . Al l I needed to do was ‘pythonize’ the data

into one big l ist of l ists, l ike this:

data = […

[0x0C, 0x1E, 0x33, 0x33, 0x3F, 0x33,

0x33, 0x00], # U+0041 (A)

[0x3F, 0x66, 0x66, 0x3E, 0x66, 0x66,

0x3F, 0x00], # U+0042 (B)

[0x3C, 0x66, 0x03, 0x03, 0x03, 0x66,

0x3C, 0x00], # U+0043 (C)

…]

I put this data into its own fi le cal led font0.py.

You can download this fi le from

http://w8bh.net/pi/font0.py. To add it to your

program all you have to do is import it. The big

l ist is referred to by its module name, dotted with

the l ist name: font0.data. The index to any

character in the l ist is the ASCII number of the

character, which we can get by using the Python

function ord() . Try this:

import font0

char = raw_input("Enter a character to

display: ")

z = font0.data[ord(char)]

#print char, z

MultiplexDisplay(z, 100)

With just a few lines of code we can display any

character on the Pi Matrix. I added the ‘#print

char, z’ statement for debugging purposes. I t is

commented out so it doesn’t do anything.

Remove the hash and it wi l l show you the

character’s data.

Text

Now let’s try displaying words and sentences.

Enter a string and display each character in the

string.

def DisplayString():

message = raw_input(“Enter a message

to display: “)

for char in message:

z = font0.data[ord(char)]

#print char, z

MultiplexDisplay(z, 100)

Python is pretty cool here because it is able to

iterate over al l of the characters in the message

without having to grab each character or

explicitly set boundaries.

Scrolling

To scrol l you need two pieces of data: the data

that is currently being displayed and the data that

is about to be displayed. For the Pi Matrix this

means we wil l keep track of data for two

characters at a time. I cal l our current character

‘z’ , since this is how I started (above), and cal l

the next (buffered) character ‘buf’ . To scrol l we

shift our current display one pixel to the left and

http://w8bh.net/pi/font0.py

1 8

move our buffered data onto the display by the

same amount. Engl ish is written left-to-right, so

left-ward scrol l ing works the best.

Let’s try an example, the word ‘Pi’ .

z ---------------------------- buf -------------------------

Here is our data. The blue boxes are ‘z’ and

represent what is being displayed on the Pi

Matrix. The green boxes are ‘buf’ , the buffered

data waiting to be written to the display.

In this example we wil l scrol l the word ‘Pi’ . The

‘P’ is being displayed and the ‘i ’ is waiting its

turn. I f we scrol l to the left by one pixel the left-

most blue column disappears. Although only the

‘P’ is visible both characters have shifted sl ightly

to the left.

z <--------------------------- buf <-----------------------

To do this in code, take one row at a time. Shift

the bits in the row to the left making sure that the

left-most bit in the green box (buf) gets

transferred to the rightmost bit in blue (z).

Here's what things look l ike on the next scrol l .

The leading part of the ‘i ’ is now appearing on

the display.

But what if we were doing a longer word, l ike

‘pie’ . We need to add the ‘e’ . There is too much

space behind the ‘i ’ already!

Remember, however, that the green box is just a

buffer and isn’t being displayed. We’ l l fi l l i t with a

new character as soon as the previous character

has been completely shifted into the blue box (i .e

is visible) .

I t is time to code the shift routine, using 'z' and

'buf'.

def ScrollLeft(z, buf):

for row in range(0, 8):

z[row] >>= 1 #shift current

image row right 1 bit.

if buf[row] & 0x01: #is bit 1 of

buffer high?

z[row] |= 0x80 #rotate bit 1

of buffer into bit 7 of current image.

buf[row] >>= 1 #shift buffer

row right 1 bit also.

The ‘>>= 1 ’ operation shifts the operand one bit

to the right; b7 becomes b6 and so on. We do

this for each z[row] and buf[row]. The 'if'

statement shifts data from buf to z.

Now we have all the parts we need to scrol l .

Start with a blank display and load the first

character into buf. Scrol l one bit at a time and

display the data. After every 8th scrol l , load a

new character into buf. Done!

Making it useful

My first python program grabbed user input from

a prompt l ike this:

st = raw_input("Enter something: ")

There are other ways to get input. One method

is to take it from a command line parameter, l ike

this:

./matrix4.py “Go Away!”

I t is easy to get the command line parameters in

1 9

Python. First import the sys module then

sys.argv wil l return the l ist of command line

parameters:

import sys

print sys.argv

From the above example, the program name

‘matrix4.py’ is contained in sys.argv[0] and our

text is in sys.argv[1]. We can also get text from

something cal led ‘standard input’ . Stdin is the

source for command-l ine programs in al l Unix-

l ike operating systems. By default this is the

keyboard. I f we want to look for other sources

from Python we can read from sys.stdin instead.

Combining the two gives us lots of input choices:

import sys

if len(sys.argv) > 1:

st = sys.argv[1]

else:

st = sys.stdin.read()

Now we can get do al l sorts of neat Linux stuff

l ike pipes and redirects:

./matrix4.py "The yellow brown dog"

echo "The MagPi is great" | ./matrix4.py

cat poem.txt | ./matrix4.py

./matrix4.py <poem.txt

Python code

The sample code for this month is too long to

publish in the magazine, but you can download it

from http://w8bh.net/pi/matrix4.py. (You

may need to change the ORIENTATION

constant at the start of the fi le. Also, Model B

Revision 1 owners need to set

bus=smbus.SMbus(0) near the end of the fi le) .

Conclusion

This concludes our mini-series on the Pi Matrix.

As an exercise try to display Conway's "Game of

Life" on the Pi Matrix. Have fun!

Because most of the content that we publish in

The MagPi is educational, i t does not age as

fast as content in traditional magazines.

With the 1 6th issue we have now produced over

500 pages of Raspberry Pi goodness and,

unless you've had a Raspberry Pi for some

time, there is a good chance you do not know

about al l of the great articles that we have

published in previous issues.

Here is a short l ist of just some of our earl ier

articles, with the issue numbers in parenthesis.

You can download every issue of The MagPi for

FREE from http://www.themagpi.com.

Skutter - bui ld a robot (1 , 2, 3, 6, 8, 1 6)

Play and create computer music (2, 1 2, 1 3)

GPIO interfacing for beginners (2, 3, 4, 5, 7)

Command line / Bash (2, 3, 4, 5, 1 0, 1 2, 1 6)

3-axis accelerometer (4)

Customise the LXDE menu (4)

Raspberry Pi media centre (5)

Pumpkin Pi - get ready for Halloween (6)

Arduino and Raspberry Pi (7, 8, 1 5, 1 6)

Home automation (8)

SD card backup (9, 1 0)

RISCOS (9, 1 1 , 1 3, 1 5)

Minecraft programming (1 1)

Printing with the Raspberry Pi (1 1 , 1 2)

Operating Systems (1 2)

Raspberry Pi camera module (1 4, 1 5)

There have also been many tutorials for a

variety of programming languages.

C (3, 4, 5, 6, 9, 1 3)

C++ (7, 8, 1 0)

Python (1 , 2, 3, 4, 5, 6, 7, 8, 9, 1 0, 1 3, 1 4)

Scratch programming for kids (1 , 3, 4, 5, 1 3)

Ada (6, 8)

SQL (8)

Charm (1 0, 1 1 , 1 4)

Java (1 4, 1 6)

http://w8bh.net/pi/matrix4.py
http://www.themagpi.com

20

Python for Kids
Jason R. Briggs
No Starch Press

Python for Kids is another fantastic volume from

No Starch Press – the publishing company which

label themselves ‘The Finest in Geek

Entertainment’ . Python for Kids certainly l ives up

to their reputation as this book provides a

refreshingly fun and engaging platform for

chi ldren to learn about programming.

Having said that, despite its title and obvious

target market (the young!) – the quality and

technical depth of this book provides a playful

introduction to programming to readers of any

age.

Starting with basic theory and fundamentals and

moving quickly on to creating your own computer

games this book is your ticket into the amazing

world of computer programming! Each chapter

contains a number of fantastic programming

puzzles designed to stretch your brain and

strengthen your understanding.

Python for Kids puts the fun back into

programming and brings Python to l i fe. By the

end of this book you wil l have gained a strong

understanding of this powerful and expressive

programming

language.

There is even

a companion

website to

support your

learning, where

you wil l find

downloads for

al l of the

examples in

this book,

solutions and

additional

programming

puzzles.

Bought a Raspberry Pi and wondering what to do

with it? This book provides the answer.

Raspberry Pi In Easy Steps
Mike McGrath
In Easy Steps

Raspberry Pi in easy

steps does exactly

what it says on the

tin. As part of the

Easy Steps series of

how-to guides this

book offers a great

step-by-step

introduction to the

Raspberry Pi.

I t contains nine chapters of high-qual ity,

i l lustrated, ful l-colour pages. I t covers everything

from purchasing and setting up the Raspberry Pi

al l the way through to programming in Scratch

and Python, developing your own games and

applications and control l ing the GPIO pins.

Raspberry Pi in easy steps is written in plain

Engl ish which provides a jargon-free and fun way

to find your feet in the exciting world of

Raspberry Pi. This clear and easy to fol low guide

provides a great foundation for new users and

those wishing to further their knowledge of this

fantastic l i ttle computer.

Each chapter includes a number of useful

pointers under the headings ‘Hot Tips’ , ‘Beware’

and ‘Don’t forget’ – these break down key

information into easi ly digestible bite-size

chunks. They provide handy tips to spice up your

learning, flag something to remember or ward

you away from potential dangers.

This book is a clear and fuss-free introduction to

the Raspberry Pi – it is great value for money and

is suitable for adults and chi ldren al ike.

The MagPi and Bookaxis are pleased to offer readers a 40% discount. To claim,
order from www.bookaxis.com/magpi and quote promo code MAGPI1 6.

Please note: this discount is only val id from the 1 st to the 30th September 201 3 on the two book titles l isted here.

http://www.bookaxis.com/magpi

http://swag.raspberrypi.org

22

DIFFICULTY : BEGINNER

Jacob Marsh

ModMyPi

THE PI-LITE
Get yours today from ModMyPi

A plug and play LED matrix
board for the Raspberry Pi

The Pi-Lite is a versati le, plug and play, 1 26 LED

(9x1 4 Grid) matrix display for the Raspberry Pi.

Each pixel is individual ly addressable - so you

can display scrol l ing text, graphics and bar

graphs; basical ly anything that can fit in 1 26

pixels! I t’s a great starting place for doing

something visual with your Raspberry Pi.

The Pi-Lite comes as a complete, ful ly

assembled board that requires no soldering and

it’s designed to plug straight into the Raspberry

Pi’s GPIO ports. The matrix is control led by an

on-board ATMega 328 processor with pre-

loaded software and works equally well with a

Raspberry Pi using GPIO or with a PC, Mac or

Linux machine via the on-board FTDI connector.

You’ l l find a short beginner’s guide to set the Pi-

Lite up on the Raspberry Pi below.

Step 1 - setting up the Raspberry Pi
for basic Pi-Lite functions!

The Pi-Lite is as Ciseco product, so requires a

custom Wheezy Image to be loaded onto an SD

card and used for this task. This image has

reconfigured GPIO pins for serial access and the

Minicom terminal emulator that’s used to send

and receive characters from the serial port is pre-

instal led. You can set al l this up manually on your

version of Raspbian; however for ease of this

tutorial we’ l l use the custom image which can be

downloaded at the fol lowing l ink:

http://openmicros.org/Download/2013-05-25-

wheezy-raspbian-ciseco.img.zip

Simply unzip the image and load it onto an SD

card l ike the standard Raspbian distribution.

Step 2 - the fun stuff!

Make sure your Raspberry Pi is switched off and

then plug the Pi-Lite in. I t sits on top of the GPIO

ports within the footprint of the Raspberry Pi and

fits neatly inside a ModMyPi case. Boot your

Raspberry Pi up, log in and you’ l l be presented

with the Raspberry Pi command line. The Pi-Lite

wil l also auto-boot with a very cool sequence!

To access the Pi-Lite module via Minicom and

send scrol l ing text messages, enter the

command:

minicom -b 9600 -o -D /dev/ttyAMA0

Now, simply by typing, you can send any text to

the Pi-Lite which wil l be scrol led across

automatical ly. I t’s also possible to enter

Minicom’s command mode to change various

settings, such as the scrol l speed or pixel state.

https://www.modmypi.com/pi-lite-raspberry-pi-led-matrix
http://openmicros.org/Download/2013-05-25-wheezy-raspbian-ciseco.img.zip

23

To enter command mode type $$$ (three dol lar

signs) - which wil l stop al l scrol l ing and Minicom

wil l respond with “OK”. Al l commands must be

sent as one string in UPPER case and

terminated with a carriage return (pressing

enter) . After receiving and carrying out a

command the Pi-Lite leaves command mode and

returns to scrol l mode. I f a command is not

received within a few seconds or a command is

inputted incorrectly, the command control wi l l be

terminated and the Pi-Lite wil l return to scrol l

mode.

As an example, we’ l l increase the scrol l ing speed

using the SPEED command. By default the scrol l

speed is set to 80, but it can be set anywhere

from 1 (very fast) to 1 000 (very slow). Let’s slow

our scrol l speed - simply type:

$$$SPEED200

Then hit enter. The Pi-Lite wil l automatical ly exit

command mode and re-enter scrol l mode. You

can now check to see that your scrol l speed has

increased!

There’s a ful l l ist of commands, as well as the

example scripts uti l ised in Step 3 below,

avai lable at the fol lowing l ink. You’ l l need these

to show bar graphs, turn on/off individual pixels,

and general ly make your Pi-Lite function:

https://www.modmypi.com/pi-lite-raspberry-

pi-led-matrix

Step 3 - running scripts!

What’s great about the Pi-Lite is that it enables

you to run custom Python scripts and

subsequently show graphics, repeated text

strings, read the weather, run a real-time Twitter

feed or display anything else you can imagine! I ’ l l

show you how to download and run some

example Python scripts, but you can always edit

them or write your own if you’re feel ing

adventurous! Please note, use upper case in the

commands where stated.

The Ciseco Wheezy image wil l already have a

suitable version of Python instal led. However,

you’ l l also need to instal l the “Git Control

System” and the “Python Serial Package”:

sudo apt-get install git

sudo apt-get install python-serial

We now need to pul l the l ibrary fi les from Github

and put them in a directory. First ensure you are

in your home directory by changing directory to

the standard home location:

cd /home/pi

Then create a directory for the Github example

fi les and browse to it:

mkdir git

cd git

Now obtain the Pi-Lite source code. This

includes the Python examples:

git clone

git://github.com/CisecoPlc/PiLite.git

You can now browse to the example scripts:

cd PiLite/Python_Examples

Some of the scripts can be run straight from the

command line via Python (CTRL+C wil l

terminate). For this example we’ l l run the

Pacman example script, which displays (you

guessed it) Pacman on the Pi-Lite! :

python Pacman.py

As with al l Raspberry Pi projects - the best way

to learn is to play and a great place to start is the

Pi-Lite!

This article is
sponsored by
ModMyPi

All breakout boards and accessories used in this

tutorial are avai lable for worldwide shipping from

the ModMyPi webshop at www.modmypi.com

http://www.modmypi.com
http://www.modmypi.com
https://www.modmypi.com/pi-lite-raspberry-pi-led-matrix

24

DIFFICULTY : ADVANCED Michael Jones

Guest Writer

LOGI-PI
SPARTAN6 FPGA board

Raspberry Pi meets FPGA

Last month's Arduino - Raspberry Pi usage article

introduced the option of directly connecting to, developing,

and running an Arduino from the Raspberry Pi. This opens

the door for many usages that would not otherwise be

avai lable running either of the platforms singularly.

Bringing different technologies together in this way enables

wider capabi l i ty in a system. Similar to joining the

Raspberry Pi and the Arduino, it is possible to connect

many more technological standards to the Raspberry Pi to

enable an electronic smorgasbord of functional ity. There

are so many different electronics standards, interfaces,

and processing architectures, and now there’s a way to

use them together with the LOGi-Pi.

The sea of electronics

We work in a sea of continual ly expanding electronics

boards and modules. Never has there been such an

opportunity to work with so many different varieties of

modules and processing architectures. There has been an

explosion of different electronics options for electronics

modules from parts and connectors below .4mm pitch al l

the way up to the long used standard of 2.54mm pitch.

There is the Arduino platform and shields, the Raspberry

Pi platform and Plates, the Digi lent Inc PMOD modules

and Xil inx’s high performance FMC expansion module

standard and many more. Each of these standards has a

myriad of off-the-shelf electronics plug in modules that can

be plugged into the corresponding family of development

boards enabling the platform to be used in a wide range of

different applications. These standards were initial ly

developed to meet the specific needs of the corresponding

family only. What if al l of these modules could be used by

a wider audience and could be used on many different

development platforms? The potential for uses and

applications would go up exponential ly. What if these

different module standards could be not only with well

known CPU platforms, but with FPGA platforms as well?

What if al l of these technologies could be used together?

FPGA technology - Parallel
processing

FPGA technology is highly contrasting to the more well

known and widely used CPU technology. There a few key

differences between the two. At the low level, FPGAs are

made of transistor configurations that make up logic gates

that combine to make combinational logic or fl ip flops that

can then combine to make up register transfer logic (RTL)

and the hierarchy and abstractions keeps going up from

there. These combinations and abstractions are put

together to create CPUs, custom hardware processing

modules that are found in ASICS and/or the combination of

the multitude of integrated circuits found on the market

today.

25

FPGAs are similar to CPUs in that they are able to process

data. I f a CPU needs to handle tasks A, B and C, the it

would typical ly start with task A and move through task B

and C in a l inear fashion to finish the tasks. As the CPU is

given new tasks, the tasks are added sequential ly and are

processed unti l they are al l finished. The CPU may

become loaded with too many tasks or tasks that take a

large number of instructions to complete, slowing down the

processing or causing errors. This often happens, for

example, in real-time systems. The solution would be to

either remove some of the tasks or use a faster processor.

I f an FPGA had the same tasks, A,B,C, the tasks could be

constructed so that each task was being processed at the

same time or in paral lel . Any new tasks are also

processed in paral lel so no additional time is required for

the additional processing. Tasks can continue to be added

as long as there is enough logic within the FPGA. This

example is not to show that FPGAs are superior to CPUs,

but to show that the two technologies operate very

differently. Both are very good at doing what they do in

their respective applications. The FPGA abil i ty to have new

functional ity added to it without affecting the performance

of other functional ity makes it great for applications that

require flexibi l i ty. The complementary nature of operation

between CPUs and FPGAs is also the reason that they

work very well when used with each other. When used

together, these qualities of the CPUs and FPGAs

complement each other and deliver outstanding results.

FPGAs are Logic Fabric - FPGAs are
like a Chameleon

FPGAs are widely used in the electronics industry because

of their unrivaled abi l i ty to be ful ly reconfigured to support

any number of contrasting applications while not requiring

any modification to the PCB hardware or design. FPGAs

are commonly referred to as “logic fabric”. This term

implies that the logic fabric can be modified, cut, pieced

and applied in many different configurations to create

customized applications that otherwise might require the

design and fabrication of an ASIC (very expensive); or by

using a mixture of different discrete logic and/or processing

solutions. Many times FPGAs are used in designs

knowing that the design requirements wil l change and the

FPGAs would need to be updated to meet the changes

without modifying the existing board hardware. The only

change that would be required is for new HDL code to be

written and loaded into the FPGA, assuming the inputs and

outputs have not changed. In this way, FPGAs are l ike a

chameleon, taking on new colors or disguises to adapt to

changing environments.

Introducing the LOGi-Pi

The LOGi-Pi is a member of the LOGi Family of FPGA

development boards. I t was designed as a solution that

unifies the wide range of electronics that are currently

avai lable on the market. The LOGi-Pi was designed to

provide a plug-and-play experience that supports the most

widely used electronics module interfacing standards. This

al lows the maximum number of off-the-shelf hardware

modules to be directly compatible in a plug-and-play

manner with the LOGi-Pi. The LOGi-Pi has drivers and

applications that create a seamless solution for users who

want to use an FPGA, high performance processing CPU.

and a multitude of avai lable add-on modules.

Maximum Interfacing Compatibility
with existing modules

The LOGi-Pi seeks to al low as much plug-and-play

expansion to existing avai lable hardware as possible by

using widely avai lable and low-cost, off-the-shelf hardware.

PMODs and Arduino Shields were chosen to be used as a

standard interface, based on their wide market usage,

26

avai labi l i ty, and cost. There are currently 59 PMODs and

281 Arduino Shields avai lable that could be used to add

direct functional ity to the LOGi-Pi. Additional ly, high

bandwidth SATA interconnects implementing impedance

control led LVDS lines can be interfaced. By using LVDS,

such applications as HDMI, SDR, LVDS camera

interfaces, and other high bandwidth applications can

easi ly be developed on the LOGi-Pi. Al l applications are

intended to be implemented without needing soldering,

jumper wires, or “perf” board expansion as is general ly

required to interface to many existing FPGA boards.

High Performance Applications

The LOGi-Pi was designed to al low implementation of

many high performance applications in a straightforward

manner. Many popular applications are best served by the

processing capabil i ties of an FPGA, including SDR

(Software defined Radio), quad-copter control, computer

vision, and bitcoin mining. Applications have been created

for the LOGI-Pi that implement machine vision, and bitcoin

mining, and autonomous vehicle control ler using GPS, 9-

axis IMU, WIFI , and machine vision to run blob detection

and color detection algorithms. These applications are

representative of a few of the applications that can be

developed by using off-the-shelf components and

integrating high performance CPU and FPGA technology.

Beginners to experienced FPGA
developers

The LOGi-Pi was designed to give beginners an easy way

to delve into advanced applications. The LOGi-

applications are al l open source and are avai lable on

github. The applications are organized in such a way that

the user wil l simply need to have git instal led on their

Raspberry Pi, pul l the latest pre-bui lt applications, plug in

the hardware modules, including the LOGi-Pi, and then run

a shel l script that wil l load the bitstream into the FPGA,

setup any needed Raspberry Pi drivers and software, and

run the application. The source code is completely open

for customizations for those who are interested in getting

into the nuts and the bolts of how the applications run.

No matter your experience level, there are fun applications

to delve into that use the wide array of avai lable

electronics. Let the LOGi-Pi be your gateway into

exploring the latest technologies in creating fun, high

performance, easy to use applications. Watch for guides

in the coming months that walk through the process of

using the LOGi-Pi in conjunction with the Raspberry Pi to

create these highly functional applications.

You can find information relevant to the LOGi-boards on

the logi-blog [1], logi-wiki [2] or logi github repository [3].

Do you have a great idea for a cool project you would l ike

to implement using a LOGi-Pi? We just started the LOGi

Contest which wil l get a free board if your ingenious project

idea and plans for implementation are selected as a

winner by the LOGi-Team [4]. Want to get involved? We

would love to have the help of anyone interested that has

some basic ski l ls in HDL and programming (C, C++,

python,etc). Want to meet the mad geniuses behind LOGi-

projects? Meet Jonathan Piat, principal developer, and

the LOGi-Team [5]? Email us with any feedback thoughts

or suggestions [6].

[1] http://valentfx.com/logi-blog

[2] http://valentfx.com/wiki

[3] https://github.com/fpga-logi

[4] http://valentfx.com/logi-blog/item/logi-contest

[5] http://valentfx.com/logi-blog/category/logi-team

[6] support@valentfx.com

http://www.thepihut.com
http://phenoptix.com

28

DIFFICULTY : INTERMEDIATE

Tony Goodhew

Guest Writer

USB ARDUINO LINK
Add analogue ports to your Raspberry Pi

Using a liquid crystal display
and Arduino analogue pins

USB Arduino link - Part 2

Last month I wrote about how to set up your

Raspberry Pi so that it could communicate with

an Arduino via a serial USB cable using Nanpy.

In this mode the Raspberry Pi is the master and

the Arduino is its slave input/output board,

providing protection and extra faci l i ties for the

master. I l isted simple Python digital input and

output programs using a button switch and an

LED to test the system. I hope you managed to

get it working. I am now going into more detai l

about driving a l iquid crystal display and the 6

analogue pins (A0 – A5) on the Arduino, which

can read voltages between 0 and 5 volts.

Using a liquid crystal display (LCD)

Our example uses a 5 volt 1 6x2 HD4470

compatible LCD (currently about £7 from

oomlout.co.uk and from other suppliers) . For ful l

circuit information, visit:

http://oomlout.com/parts/LCDD-01-guide.pdf

I t is very easy to control via the bui lt in Nanpy

LCD library. When running Nanpy, pins 0 &1 of

the Arduino are used for communication with the

Raspberry Pi; so I connected my LCD to pins 2

through 7.

The fol lowing program demonstates the

operation by counting up and down:

#!/usr/bin/env python

Basic LCD use via nanpy

from time import sleep

from nanpy import Arduino

from nanpy import serial_manager

serial_manager.connect('/dev/ttyACM0')

from nanpy import Lcd

lcd = Lcd([7,6,5,4,3,2], [16,2]) #LCD set-up

print "### Starting ###\n"

LCD pin Name Arduino pin

1 GND GND

2 Vdd 5V 5V

3 Contrast 1 0K ohm potentiometer

wiper. Others to 5V & 0V

4 RS 7 # Not 1 2

5 R/W GND

6 Enable 6 # Not 1 1

1 1 Data 4 5

1 2 Data 5 4

1 3 Data 6 3

1 4 Data 7 2

1 5 Light +ve 5V

1 6 Light -ve GND

http://oomlout.com/parts/LCDD-01-guide.pdf

29

Heading - top row

lcd.printString("LCD Demo - Counting", 0, 0)

sleep(1)

for i in range(0, 21):

position = 4

if i < 10:

position = position + 1

Clear 2nd row

lcd.printString(" ", 0, 1)

lcd.printString(i, position, 1)

i2 = 20 - i

position2 = 9

if i2 < 10:

position2 = position2 + 1

lcd.printString(i2, position2, 1)

sleep(0.7)

print "\n### FINISHED ###"

Reading analogue values

The Arduino has 6 analogue ports for reading

voltages between 0 and 5 volts with 1 0-bit

resolution giving values from 0 to 1 023. The

second circuit from the left in the photograph in

the header of this article, between breadboard

columns 30 and 40, shows the simplest analogue

demonstration circuit. I t uses a 1 0K ohm

potentiometer with the outer pins connected to

GND and 5 volts. The central wiper pin is

connected via the orange wire to pin A1 on the

Arduino. This pin is also cal led pin 1 5. (A0 is 1 4,

A1 is 1 5 …. A5 is 1 9.)

The fol lowing code demonstrates how to read

analogue values in Python:

#!/usr/bin/env python

Read values from Analogue pin A1

from nanpy import Arduino

from nanpy import serial_manager

serial_manager.connect('/dev/ttyACM0')

from time import sleep

pot = 15 # Pot on A1 - Analog input

print "Turn the pot - 10 bit ADC input"

for i in range(0, 40):

val = Arduino.analogRead(pot)

print val

sleep(0.3)

As you turn the spindle on the potentiometer the

values change within the range 0 to 1 023.

You can connect many different components and

devices to the analogue pins: to read

temperatures, measure distances, etc.

Once you start bui lding more ambitious projects

you wil l find that you can quickly run out of pins.

As you have seen, a l iquid crystal display uses

up 6 of your digital pins. Imagine that you were

bui lding a model l i ft. You need digital pins to

control the motor, an LCD and several LEDs.

You also need buttons to cal l the l i ft on each floor

and others in the cage. One trick is to use a

single analogue pin to monitor the 5 switches on

the panel in the l ift cage.

The circuit below is shown in the photograph in

breadboard columns 42 to 61 . I t has five

resistors in series and five button switches

connecting the resistor junctions to GND. The

circuit is connected to Arduino pin A1 via the

yel low wire from the junction between the right

most resistors.

The circuit is shown below:

Pin A1 (15)

|

+---3K3---+---1K0---+---680R---+---330R---+---2K2------ 5v

| | | | |

Alarm Close Floor 0 Floor 1 Floor 2 Switch name

| | | | |

[772] [490] [322] [134] [0] Analogue value

| | | | |

+---------+---------+----------+----------+------------ GND

Here the 2K2 ohm resistor acts as a pul l up

resistor to 5 volts. With no button pressed the

reading from the analogue pin is 1 023. I f the

button for floor 2 is pressed the junction is

shorted to GND and the reading changes to 0,

just l ike a digital switch. As each button is

pressed in turn, from right to left, the resistance

to GND increases (0, 330R, 1 K1 , 2K1 , 5K4

Ohms) and the voltage at the main junction

changes. Unfortunately, resistors with the same

nominal value can vary significantly but sti l l be

within their quoted tolerance. I t is not real ly worth

30

trying to calculate the analogue value for the

other switches as each board wil l be sl ightly

different. I t is much easier to re-run the last

program a few times with the yel low wire

connected to pin A1 , press the buttons in turn

and record the values for each button. My values

are shown in the square brackets and l isted in

the program.

There is usual ly at least one ‘difficult’ button

whose value osci l lates between two adjacent

values. My reading for the ‘Close Door’ button

was either 490 or 489. This problem is easi ly

overcome by testing for a range between upper

and lower l imits rather than a specific value.

There are very large gaps between the button

values leaving plenty of room for the ‘fudge

factor’ .

For example: (value > 485 and value < 495)

rather than (value == 490).

Here is the basic code to read the switches:

#!/usr/bin/env python

Read 5 switch/resistor array on pin A1 (15)

Lift cage control panel simulation

from time import sleep

from nanpy import Arduino

from nanpy import serial_manager

serial_manager.connect('/dev/ttyACM0')

pot = 15 # Pot on A1 - ADC input

You may want to change these values to match

your board or increase fudge value

floor2 = 0

floor1 = 134

floor0 = 322

close = 490

alarm = 772

fudge = 5

print "Press the buttons"

print "\nCTRL-C to stop program\n"

old_val = -1

val = Arduino.analogRead(pot)

while True:

try: # Trapping CTRL-C

Has val changed > ADC 'wobble' ?

if abs(old_val - val) > 3:

old_val = val

if val < fudge:

print"Floor 2"

if val > floor1 - fudge and val <

floor1 + fudge:

print"Floor 1"

if val > floor0 - fudge and val <

floor0 + fudge:

print"Floor 0"

if val > close - fudge and val <

close + fudge:

print"Close doors"

if val > alarm - fudge and val <

alarm + fudge:

print"Alarm"

val = Arduino.analogRead(pot)

except KeyboardInterrupt:

print "\nProgram interrupted.\n"

break

print "*** Finished ***"

This is an ‘endless loop’ program – lifts run al l

the time. Stopping it with <CTRL>+<C> normally

results in a mess of red error messages. Notice

how this has been trapped, which results in a

‘clean’ termination.

Conclusion

You can contact me with any feedback,

suggestions or questions, via email at

arduinol ink@gmail .com. I enjoy experimenting

with hacking projects and robots and hope to

encourage others to take up this great hobby

(especial ly in Leicestershire, where I taught

computing for 23 years. How about a Raspberry

Jam? Lancashire is doing so much more!) .

Thanks again to Andrea Stagi for producing

Nanpy.

mailto:arduinolink@gmail.com

http://www.panavise.com

http://www.abelectronics.co.uk
http://www.abelectronics.co.uk/magpi/

Want to keep up to date with al l things Raspberry Pi in your area?
Then this section of The MagPi is for you! We aim to l ist Raspberry Jam events in your area, providing

you with a Raspberry Pi calendar for the month ahead.

Are you in charge of running a Raspberry Pi event? Want to publicise it?
Email us at: editor@themagpi.com

Cambridge Raspberry Jam
When: Saturday 21 st September 201 3, 1 2.30pm unti l 6.00pm

Where: Institute of Astronomy, Madingley Road, Cambridge CB3 0HA

This event is currently sold out but a waiting l ist exists. Further information avai lable at
http://cambridgeraspberry-es2.eventbrite.com

CAS Teachers North London Hub Meet
When: Wednesday 25th September 201 3, 3.30pm unti l 5.30pm

Where: Central Enfield City Learning Centre, 1 1 3 Parsonage Lane, Enfield, UK

A session for teachers to share their experience of using Raspberry Pi 's. Further information:
http://pienfieldclc-es2.eventbrite.co.uk

At-Bristol Raspberry Pi Boot Camp
When: Saturday 28th September, 1 0.30am unti l 4.30pm

Where: At-Bristol Science Centre, Anchor Road, Harbourside, Bristol, BS1 5DB, UK

The event wil l include l ive demonstrations, workshops and hands on tutorial sessions. Sponsored by
ARM who wil l also be in attendance. http://pibootcampsept201 3.eventbrite.com

The Raspberry Pi at CERN
When: Saturday 5th October 201 3, 9.30am unti l 4.30pm

Where: CERN Microcosm, Route de Mayrin, 1 21 1 Geneva, Switzerland

The event wil l include l ive demonstrations, motivational talks and a hands on tutorial session. Guest
speakers from Google and Ibisense wil l also be present. http://cern-raspberrypi.eventbrite.fr

33

http://cern-raspberrypi.eventbrite.fr
http://pibootcampsept2013.eventbrite.com
http://cambridgeraspberry-es2.eventbrite.com
http://pienfieldclc-es2.eventbrite.co.uk

34

DIFFICULTY : MEDIUM Vladimir Alarcón
& Nathaniel Monson

Guest Writers

FRESHLY ROASTED
A beginners guide to Java

2 - Control flow and basic variables

The main goal of this second article is to give you more

elements of the Java programming language, so you'l l be

able to write much more powerful programs. The first

article in the series appears in Issue 1 4. I t might prove

helpful to read over the C cave articles too, since basic

Java syntax is in many cases the same as C.

In this article, I first explain in detai l Java control-flow

statements. Then, I focus on numbers, strings, and

booleans, and I also include examples that combine them.

With al l these new elements you can write complex logic to

your code. Well . . . let's go for it!

Control-flow statements

In the first article in Issue 1 4 we looked at two control flow

statements: if and while. I know you already know, but

let me remind you anyway. An if condition executes the

fol lowing statement only when the condition in between

parenthesis is true. For example:

if (a > 3) { c = c + a; }

This example adds a to c, only when a is greater than 3.

The section in between the round parenthesis is cal led the

condition and must evaluate to true or false, i .e. i t's a

boolean expression (I 'l l explain booleans later in this

article) .

An if statement can, additional ly, include a section to be

executed when the condition is false. For example:

if (score > 50) {

System.out.println("You won! :)");

} else {

System.out.println("You lost. :(");

}

The other statement we saw before was while. The

while statement executes the fol lowing statement zero,

one or many times, as long as the condition in it remains

true. For example,

int f = 10;

while (f < 20) {

System.out.println(f);

f++;

}

wil l print al l the integer numbers bewteen 1 0 and 1 9. I t

won't print 20, because at that point the condition wil l not

be true anymore. Ah... did you notice the fourth l ine? Good

catch! The two + signs after a variable increase its value.

That is a short way of typing:

f = f + 1;

Similarly,

f--;

decreases the value of the variable by one and assigns the

35

result to the varaible. I t is equivalent to:

f = f - 1;

Now, let's look at the for statement. for is simi lar to a

while statement, but it combines the condition, the

starting point, and the change statement into one l ine. The

numbers between 1 0 and 1 9 can be also written using

for:

for (int f = 10; f < 20; f++) {

System.out.println(f);

}

Compare both examples. Yes, I would agree that a for

statement looks more compact than a while. A while,

though, can be easier to read some times.

In a for, the section between parenthesis is divided in

three parts: the first one is executed only once when

starting; the second one is the condition to check on every

cycle; the third one is to be executed at the end of every

cycle.

Now open your editor and try the fol lowing program:

public class Countdown {

public static void main(String[] args)

throws InterruptedException {

for (int t = 10; t >= 0; t--) {

System.out.println("-> " + t);

Thread.sleep(1000);

}

System.out.println("-> Fire!");

}

}

Compile it using the javac command and run it using the

java command (see previous article for detai ls) . This

program wil l count down from 1 0 seconds down to zero

and then prints "Fire! ". Do you see how the value of the

variable t changes? We use the double minus sign here to

decrease its value. Also, did you notice the l ine with

Thread.sleep(1000);? That l ine makes the program

wait for 1 second (1 000 mil l iseconds) each time, so the

numbers don't show up all at once. To use the

Thread.sleep method, the for loop is within a throws

statement. Trust me on the throws statement for now; I 'l l

explain exceptions later on.

Challenge #3: Create a new program Countup.java that

wil l count from 1 to 20, using a one second sleep. Then

when reaching 1 5, show a message saying "Five to go...".

Last but not least, let's look at the switch statement. A

switch checks for the value of a variable and allows to

execute different code for different values of it. For

example:

import java.util.Random;

public class CardinalDirection {

public static void main(String[] args) {

Random r = new Random();

int dir = r.nextInt(4);

switch (dir) {

case 0:

System.out.println("North");

break;

case 1:

System.out.println("West");

break;

case 2:

System.out.println("South");

break;

default:

System.out.println("East");

break;

}

}

}

In this example, an integer number is randomly chosen

between zero and three (four possible cases). The

interesting part is that the number is not shown as a

number, but as a cardinal direction. Each case statement

specifies what to do if the variable has the specified value.

Please note that I don't use a case for the number three,

but I use a default statement. I t's always a good practice to

use a default statement, so any unspecified value wil l be

shown anyway.

Well , that's it for now with control flow statements. Of

course there are other more exotic ones l ike continue

and do-while but they are less used and I 'l l leave them

for you to study.

Let's now move on to a totaly different subject.

36

A little bit about numbers

Sooner or later you'l l need to do some maths, so here are

the basics. In Java every numeric variable must be

declared as one of the types bui lt in the language itself.

Java provides four integer types (without decimal places),

two floating points (with decimal places) and two very high

precision types. When using numbers you need to declare

the variable once, and then you can assign a value to it.

For example:

int trees; // declaration

trees = 17665785; // assignment

You can assign and reassign the value of the variable

many times, but you must declare the variable only once.

These two lines can be combined as:

// declaration & assignment

int trees = 17665785;

By the way, did you notice the //? The double slash

al lows you to write a comment. Anything in the l ine after it

is ignored by Java, so you can add notes or reminders.

These are typical ly very useful several months later, when

you need to look at your program and you don't remember

why you did something.

Now, if you want to use integer numbers you have four

options:

byte: -128 to 127

short: -32768 to 32767

int: -2,147,483,648 to 2,147,483,647

long: -9,223,372,036,854,775,808

to 9,223,372,036,854,775,807

You'l l probably use the third one (int) most of the time,

unless you real ly need big numbers or small numbers. On

the other hand, if you want decimal numbers (floating

point) you have two options:

float: ±1.401298e-45 to ±3.402823e+38

double: ±4.94065645841246e-324

to ±1.79769313486231e+308

Normally, i f you want to do a lot of maths you wil l probably

prefer the type double (1 5-digit precision) over float (7-digit

precision).

The four maths operators are written as +, -, *, and /, and

you can use parenthesis to group sections as you need.

The fol lowing program shows examples of maths

operations:

public class Numbers {

public static void main(String[] args) {

int x = 5;

System.out.println(7 + x * 3); // 22

System.out.println((7 + x) * 3); // 36

System.out.println(7 / 3); // 2

// 1 (remainder)

System.out.println(16 % 3);

// 2.33333333

System.out.println(7.0 / 3.0);

System.out.println(3.14159265 * x * x);

}

}

Notice that multipl ications and divisions have priority over

addition and subtraction, but these priorities can be

changed using parentheses.

Need more maths functions? Well , there is a class cal led

Math that provides many maths functions. For example a

more complex formula l ike:

can be written as:

double f = Math.abs(1.0 - Math.pow(x, 3.0)) /

(4.0 / 3.0 * Math.sqrt(y - Math.PI)));

When dealing with floating point calculations make sure

that you write l i teral numbers with a decimal point: for

example, instead of 3 write 3.0.

The fol lowing program adds all numbers from 1 to 1 0 that

cannot be divided by 3:

public class Sum {

public static void main(String[] args) {

int total = 0;

for (int n = 1; n <= 10; n++) {

if (n % 3 != 0) {

total = total + n;

}

}

System.out.println("Total: " + total);

}

}

37

Running this program wil l show the numbers 1 , 2, 4, 5, 7,

8, and 1 0, with a total of 37.

Challenge #4: Change the previous program to also skip

the numbers that can be divided by 4. With your change

the program should now show 1 , 2, 5, 7, and 1 0, with a

total of 25. Tip: you'l l need to add a second if statement.

I f you are curious, you can find the ful l l ist of math functions

at:

http://docs.oracle.com/javase/7/docs/

api/java/lang/Math.html

But.. . what if 1 5 decimal places is not enough for you?

Well . . . BigInteger and BigDecimal come to the

rescue. These classes can handle very high precision. A

hundred decimal places, or a thousand, or a mil l ion if you

want. Really? Yes, of course! For example:

import java.math.BigDecimal;

public class HighPrecision {

public static void main(String[] args) {

BigDecimal a = new

BigDecimal("2.7182818284"

+ "590452353602874713526624977572"

+ "4709369995"); // 50 decimal places

BigDecimal b = new

BigDecimal("3.1415926535"

+ "89793238462643383279502884197169399"

+ "375105820974944"); // 60 dec. places

System.out.println("e*pi="

+ a.multiply(b));

}

}

Run this program and see for yourself. You'l l get at least 50

digits of precision with it.

A little bit about strings

You have seen strings many times so far in examples

given in these tutorials. A string is a sequence of letters,

numbers and/or symbols (al l cal led characters). Usual ly

you see them as literals l ike "Hi John!". However, you

can use them in more complex expressions, to search

within them, to get sections of them, or when bui lding

bigger strings from several parts. For example, the + sign

bui lds (concatenates) several strings into a single one, l ike

in the example below:

String qty = "50";

String message = "I found " + qty + " books.";

I f you want to get a part of a string you use the

substring method. Every letter (character) on a string

has a position. The first one is 0, then 1 , then 2 and so on.

For example, to get the word "house" (position 4 to 8 in

the fol lowing example) you'l l write:

String line = "The house is blue.";

String word = line.substring(4, 8 + 1);

Now, if you want to find where the word "house" is in the

string you can use indexOf:

String line = "The house is blue.";

int position = line.indexOf("house"); // 4

int red = line.indexOf("red)"; // -1

Notice that indexOf is written with an upper case "O". In

the last case, the word "red" is not found in the l ine of text

and, therefore, Java returns -1 .

Also, to get the length of the string you use the method

length() and to get a single character in a string you use

the method charAt() as shown in the fol lowing example

that prints a string letter by letter.

public class LetterByLetter {

public static void main(String[] args) {

if (args.length == 0) {

System.out.println("Please type"

+ " a word.");

} else {

String word = args[0];

for (int i = 0; i < word.length(); i++){

System.out.println(word.charAt(i));

}

}

}

}

Once compiled using javac, run the program specifying a

word you choose on the command line. For example:

java LetterByLetter telephone

As I said in the previous article, the variable args

represents the parameters you type in the command line

("telephone" in this case). See how the program tel ls

you if you forget to type a word.

38

I f you look at the for statement it uses both methods to first

get the length of the string and then to get each character

one by one.

Anyway, strings have many more useful methods. The ful l

l ist can be found at

http://docs.oracle.com/javase/7/docs/api/

java/lang/String.html

Challenge #5: Change the previous program to show every

letter in upper case. Tip: once you get the whole word,

change it immediately to uppercase using one string

method. Look for this method in the web page shown

above.

A little bit about booleans

Booleans are variables that can only have two values: true

or false. They are very useful to use as indicators, or as

conditions used inside the if, while or for statements.

For example, let's declare a boolean variable;

boolean painted = false;

Now, if you want to, you can change the value as in any

other variable:

painted = true;

or you can use it in a while statement:

while (painted) {

// do something

}

You can make complex expression using booleans with !

(meaning NOT), && (meaning AND), and || (meaning

OR). A ! returns the opposite of a value. An && returns

true only if both sides are true, and a || returns true if

either side is true. For example:

boolean a = true;

boolean b = false;

boolean c = !a; // false

boolean d = a || b; // true

boolean e = a && b; // false

boolean f = (!a && b) || a; // true

Also, numbers and strings can be compared to return a

boolean. That boolean, in turn, can be used as a condition

for an if, while or for, as you may have noticed in

several examples before. For example:

int total = 156;

if (total > 100) {

// do something

}

The section total > 100 is a boolean expression, since its

value as a whole is a boolean (either true or false). To

compare two numbers you can use six operands:

== is equal to

!= is different from

> is greater than

< is less than

>= is greater or equal than

<= is less or equal to

All of them return a boolean, and as such you can combine

them in any boolean operation as you wish. In the fol lowing

example:

int sides = 6;

boolean painted = false;

if (sides >= 4 && !painted) {

// paint it!

}

you can see a more complex condition.

A final note

I know I covered a lot of topics in this second article. I t's a

l i ttle bit more complex than the first one, but my goal was to

give you as many tools as I could as soon as possible. With

them you can now write basic and not so basic programs.

You now have much more power in your hands.

On the next article we wil l cover Java methods, classes

and objects, as well as the extensive Java Class Library

included in Java ...and we'l l write a program to generate a

random map.

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html

To see the large range of PCSL brand Raspberry Pi accessories visit

http://www.pcslshop.com

July's Winner!
The winner of a new 51 2MB Raspberry Pi Model B plus an exclusive Whiteberry PCSL case,

1 A PSU, HDMI cable, 1 6GB NOOBS memory card, GPIO Cobbler kit, breadboard and jumper

wires is Ellis Howe (Peterborough, UK).

Congratulations. We wil l be email ing you soon with detai ls of how to claim your prizes!

This month there is one MASSIVE prize!

The winner wil l receive a new Raspberry Pi

51 2MB Model B, an exclusive Whiteberry

PCSL case, 1 A PSU, HDMI cable, 1 6GB

NOOBS memory card, GPIO Cobbler kit,

breadboard and jumper wires!

For a chance to take part in this month's

competition visit:

http://www.pcslshop.com/info/magpi

Closing date is 20th September 201 3.

Winners wil l be notified in next month's

magazine and by email . Good luck!

Once again The MagPi and PC Supplies Limited are proud to announce yet
another chance to win some fantastic Raspberry Pi goodies!

SEPTEMBER COMPETITION

39

http://www.pcslshop.com/info/magpi
http://www.pcslshop.com

40

DIFFICULTY : INTERMEDIATE W. H. Bell

MagPi Writer

3 - Strings & arithmetic operations

Challenge solution

Did you manage to solve the problem in Issue 1 2?

Here is a solution:

Try running the solution by typing,

This wil l print out the values of the square of x

between -4 and 4, in steps of 0. 1.

String operations

While it is possible to use command evaluation and

sed to replace string elements, Bash also contains

functional ity for some simple operations.

As for the previous examples, save the script in a

text fi le and make the fi le executable. Then run the

script and look at the output. The first l ine of the

script defines a variable to hold the French word for

with. Then the str variable is operated on by the

commands that fol low. The ${//} command

includes the variable name, the string to remove, and

then the string to replace the former string. The string

to replace is optional. The command ${#} , takes the

variable name and then the string prefix to remove.

The command only removes the start of the string.

Next "Raspberry Pie" in French is appended to the

string str_fr . Final ly, the suffix is removed using

the ${%} command. The ${%} command takes the

variable name and then the string to remove. The

#! /bin/bash

failed=0

if [[$# ! = 4]] ; then

failed=1

elif [[$1 ! = *"x"*]] ; then

failed=1

fi

if [[$failed == 1]] ; then

echo "Usage: $0 <f(x)> <min> <max> <step>"

exit 1

fi

fcn=$1

min=$2

max=$3

step=$4

python <<EOF

import math

from math import *

x = $min

while x < $max:

print "%d %f" %(x, $fcn)

x = x + $step

EOF

#! /bin/bash

with="avec"

str="Raspberry pi with Linux"

str_fr="${str/with/$with}"

str_fr="${str_fr#Raspberry pi}"

str_fr="tarte aux framboises$str_fr"

str_fr="${str_fr%Linux}Raspbian"

echo "$str_fr"

. /solution002. sh "pow(x, 2)" -4 4 0. 1

41

match is only made with the end of the string. Try

moving the echo command to an earl ier l ine in the

script to see the effect of each step, or try to change

the commands themselves.

The Bash native string functions are rather l imited,

but there are other functions avai lable via expr that

can easi ly be added to scripts.

In this script, a space is used within the string to

encourage the correct use of quotes. The distro

string is declared. Then the expr command is used

to search for the space within the string and find its

position. The return value from the expr command is

stored in the offset variable. The offset and the

substring up to the offset is then printed, along with

the length of the string. Notice that the -n in the

echo command does not append a newline

character. More expr commands can be found in

the expr man page. Try typing,

expr man

to view the manual page. Type q to leave the manual

page.

Arithmetic operations

Bash provides simple integer mathematical

operations. These can either be directly accessed or

accessed through the let function.

In this example script, two integer variables are

defined. Then the value of i is incremented before it

is multipl ied by j . Notice that integer mathematical

operations are within the $(()) brackets. The

operations wil l work as hoped with or without a dol lar

sign in front of the variable names.

This time the script demonstrates the l imitations of

integer operations by including a division. The

division rounds down, since the floating point part of

the number is lost. The behaviour is simi lar for the

let command:

The let command uses variable names. When the

arguments are more complex, quotes are needed

around the arguments. The result is automatical ly put

back into the Bash variable.

I f floating point numbers are required, the basic

calculator (bc) shel l can be used to perform simple

calculations:

Try using the bc manual page and test out some

more of the functions. I f bc is not good enough, then

try some inl ine Perl or an embedded Python script.

Challenge problem

A program writes output fi les into different

subdirectories, but the output fi les themselves have

the same name. Write a program to rename the

output fi les using a number suffix.

#! /bin/bash

distro="Raspbian Linux"

search=" "

offset=$(expr index "$distro" "$search")

echo "String: \"$distro\""

echo -n "String length: ${#distro}"

echo ", found space at: $offset"

echo "Substring: \"${distro: $offset}\""

#! /bin/bash

a=3

b=2

c=$(($a/$b))

echo "$a / $b = $c"

c=$(($a*$b))

echo "$a x $b = $c"

c=$(($a+$b))

echo "$a + $b = $c"

c=$(($b-$a))

echo "$b - $a = $c"

#! /bin/bash

i=1

j=4

i=$((++i*j))

echo $i

#! /bin/bash

radius="2. 5"

pi="3. 14159"

area=$(echo "$pi*$radius^2" | bc)

echo $area

#! /bin/bash

a=9

b=4

let a--

let "a*=2"

let "a/=b"

echo $a

42

DIFFICULTY : INTERMEDIATE John Shovic

Guest Writer

XML for the Raspberry Pi: Part 2

Introduction

This series of articles discusses the use of XML

in applications for the Raspberry Pi. Part One

introduced XML and the format of its data

structures. In Part Two we cover bui lding and

parsing XML in Python, whi le in Part Three we

wil l show how XML is used as a communications

protocol for a cl ient / server application,

RasPiConnect. RasPiConnect is an iPad/iPhone

app that connects and displays information for

any number of Raspberry Pi 's via a defined XML

interface.

What do we mean by parsing?

Parsing refers to the syntactic analysis of the

XML input into its component parts in order to

faci l i tate executing code based on the result of

the analysis. In other words, the program is

"reading" the XML to find values that it is looking

for, paying attention to proper syntax and form.

XML syntax includes a nested hierarchy of

elements. This means that each level of the

hierarchy is included as a ful ly enclosed subset

of the previous level. In our example below, each

object <XMLCOMMAND> is ful ly enclosed

("nested") in the <XMLObjectXMLRequest>.
You can extend this nesting as far down as you

l ike. When you write parsing code this nesting

usual ly results in for loops in Python iterating

through al l the objects at a level in the hierarchy.

Options for Parsing XML in Python

There are many different packages for parsing

XML in Python. We wil l be using

xml.etree.ElementTree. ElementTree is a simple

to use, fast XML tree l ibrary bui lt into Python. I t

is somewhat l imited in features, but for

straightforward XML message parsing it is hard

to beat.

What do you need to know about ElementTree?

Very few commands are needed to parse simple

XML. These few wil l be i l lustrated below.

Python Example Code

import xml.etree.ElementTree as ET

incomingXML = """
<XMLObjectXMLRequests>
<XMLCOMMAND>
<OBJECTSERVERID>W-1</OBJECTSERVERID>
<OBJECTNAME>StatusWebView</OBJECTNAME>
<OBJECTTYPE>1</OBJECTTYPE>
<OBJECTID>7</OBJECTID>

</XMLCOMMAND>
<XMLCOMMAND>
<OBJECTSERVERID>M-2</OBJECTSERVERID>
<OBJECTNAME>Processes</OBJECTNAME>
<OBJECTTYPE>64</OBJECTTYPE>
<OBJECTID>0</OBJECTID>

</XMLCOMMAND>

43

</XMLObjectXMLRequests>"""

root = ET.fromstring(incomingXML)
print incomingXML

iterate through all the values
for element in
root.findall('XMLCOMMAND'):

print 'XMLCOMMAND'
print 'OBJECTNAME:',\

element.find('OBJECTNAME').text
print 'OBJECTTYPE:',\

element.find('OBJECTTYPE').text
print 'OBJECTSERVERID:',\

element.find('OBJECTSERVERID').text
print 'OBJECTID:',\

element.find('OBJECTID').text

Setup the ElementTree data

After the import of the ElementTree code and

writing the XML to a string (note: You could be

reading this from a fi le or a web request) , we first

set up the root of the XML hierarchy. The root of

this XML code is <XMLObjectXMLRequests>.

Iterate through the list

We know from looking at the XML fi le, that

<XMLObjectXMLRequests> consists of a

number of <XMLCOMMAND> objects. We use

a for loop to do this (each element inside the root

is a <XMLCOMMAND> object) using the

ElementTree command findall (finding al l

XMLCOMMAND objects in this case).

Parse the individual items

In the interior of the for loop, we now parse the
individual elements of the <XMLCOMMAND>
object. Here we use the ElementTree element
command with the text attribute. Note that the

<XMLCOMMAND> elements are not in the same
order! XML does not care if elements on the

same level are in any particular order.

Furthermore, it is not guaranteed that the first

<XMLCOMMAND> element wil l be the first one
retrieved by ElementTree.

Expected elements can be missing from objects.

In the case of missing elements in Python (using

ElementTree) you absolutely must use an if
statement to deal with the missing element. I f you

do not then you risk causing a Python exception

when operating on the returned value as

ElementTree returns a None and not a valid
value. I f you are using strings as values, you wil l

probably want to set your string variable to a ""

(empty string) rather than al lowing it to be set to

a Python None. This is a very common mistake
in writing ElementTree code.

if (element.find('XXXX').text == None):
#do something

Uses for XML in Python programs

XML is used extensively in the software industry,

ranging from HL7 messages in Healthcare,

Simple Object Access Protocol (SOAP) for

cl ient-server information exchange, and even

XML is used in Microsoft Word fi les. The key

advantages of using XML are cross system use,

readabi l i ty, expandabi l i ty and the abi l i ty to edit

the XML in a text editor.

Programmers often use XML to read and write

configuration fi les to the disk, speeding

debugging and development. This makes it

easier to set up test suites for programs as you

can read the same XML structures from the disk

as you would send across the Internet in a web

request. The expandabi l i ty of XML allows you to

add new parameters and structures in your

Python programs while maintaining backwards

compatibi l i ty. Part Three of this series wil l show

how this is done in Python.

Conclusion

XML is wordy and as a result uses a fair bit of

disk space to store and memory to process. In

the Raspberry Pi world and across the Internet

this general ly does not matter. However, in

microcontrol lers such as the Arduino, RAM

memory space is at a premium, so a more

"dense" and simple protocol such as JSON is

more appropriate. I f disk space is at a premium,

XML wil l compress extremely well because of al l

the duplication of keywords and descriptions.

XML is easy to read, parse and debug for

beginners and seasoned programmers al ike.

The MagPi is a trademark of The MagPi Ltd. Raspberry Pi is a trademark of the Raspberry Pi Foundation. The MagPi magazine is
collaboratively produced by an independent group of Raspberry Pi owners, and is not affiliated in any way with the Raspberry Pi
Foundation. It is prohibited to commercially produce this magazine without authorization from The MagPi Ltd. Printing for non commercial
purposes is agreeable under the Creative Commons license below. The MagPi does not accept ownership or responsibility for the content
or opinions expressed in any of the articles included in this issue. All articles are checked and tested before the release deadline is met but
some faults may remain. The reader is responsible for all consequences, both to software and hardware, following the implementation of
any of the advice or code printed. The MagPi does not claim to own any copyright licenses and all content of the articles are submitted with
the responsibility lying with that of the article writer. This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-nc-sa/3.0/

Alternatively, send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041 , USA.

Feedback & Question Time
Just received my magazines and

binder today. Wow! They are

beautiful . This whole project has

been great. I had selected the

Signature Kit and am I ever so

glad. The hardware kit came

some time ago and the whole

thing was top quality. I t meant a

lot to have those books signed by

Liz and Eben. Congratulations for

a well executed project.

Tony Guerich

Just found @TheMagP1 - loads

of Raspberry Pi info, lessons,

resources and projects.

J im Leese

I love The MagPi! I remember me

as a young nerd - I was reading a

technical magazine ful l of source

code, I learned a lot by copying

those sources.

Fabrizio

Just received my binder and

mags - they look great. Thanks for

al l the effort you have put into this.

And you just know that we all

want Volume 2 now don't you :-)

Mark Pearson

I am enjoying the Raspberry Pi

and am trying to learn some

programming. I want to write my

own program with some graphics.

The MagPi is great - it has helped

me with my Raspberry Pi

experience.

ab

First I wanted to congratulate you

and the staff for putting together a

very well done publication. I 've

downloaded each one and I 'm in

the process of reading them along

side my Raspberry Pi and I do try

the programs that you have. Al l in

al l a great job and you've made it

easy for anyone to learn about the

Raspberry Pi.

I do have one comment though. I

sti l l belong to the old school and I

l ike to print each issue out and

read it and make notes in the

margins. I l ike the colours

chosen, but would ask that you

reduce the amount of sol id

colours especial ly the black bars

at the top and bottom of each

page. Having to print them only

uses up more ink which become

an expensive process for each

issue.

Richard

[ed:The PDF is a l ittle expensive

on printer ink, so we have made

hard copies up to issue 9

avai lable as bound magazines.

These are avai lable from our

l icensed retai lers who are l isted

on our website. We wil l be printing

issues 1 0+, but there is a large

workload involved in getting them

to a stage where they can be sent

to the printers, so we are sl ightly

behind.]

288 pages of goodness just

arrived! The mags look awesome!

Love the binder and stickers! I t's

been a bit of a wait but it's

definitely been worth it! The whole

bundle is fantastic and the

magazine quality is perfect, they

look and feel l ike a premium

magazine you would buy from a

newsagents.

You can see right away the hard

work that has gone into these and

it is very much appreciated.

THANK YOU! ! to the whole

MagPi team! !

Time to crack on and start

reading!

Nial Pearce

