
journal of orthopaedic & sports physical therapy  |  volume 42  |  number 12  |  december 2012  |  1005

[ research report ]

R
otator cuff tendinopathy (RCT) is one of the most 
common causes of shoulder pain and dysfunction5,26,48,73,74 
and has been associated with symptoms of shoulder 
impingement.15 Symptoms of impingement may result

from multiple underlying patholo-
gies, including altered scapular kine-
matics,9,44,47,52 glenohumeral posterior 

shoulder tightness,42,72 faulty posture,12,40 
acromial arch morphology/pathol-
ogy,6,24,63 shoulder instability,59 rotator 

cuff weakness, and motor control 
deficits.44,51,52,66,67

Several evidence-based ap-
proaches to treat RCT exist, 
including arthroscopic acromio-

plasty,49,56,62 posterior shoulder stretch,57,72 
corticosteroid injection,25,33,81 strengthen-
ing and neuromuscular re-education,76 
and joint mobilization.1,2,78 The results 
of multiple randomized controlled trials 
have indicated that joint mobilization, 
in addition to therapies such as stretch-
ing, strengthening, and neuromuscular 
re-education, has improved outcomes 
for people with certain types of shoulder 
pain.1,2,78 Two studies have specifically as-
sessed the effects of thoracic spine manip-
ulation (TSM) on pain and dysfunction 
associated with RCT.10,69 Both Boyles et 
al10 and Strunce et al69 observed that in-
dividuals with shoulder impingement re-
ported immediate decreases in pain and 
improved function after receiving TSM; 
however, neither study included a control 
group for comparison.

While TSM may be beneficial in reduc-
ing shoulder pain and dysfunction, the 
mechanisms by which the manipulation 
might induce these changes are not well 
understood. Bialosky et al3 suggested that 
the introduction of a manipulative force 
results in biomechanical as well as neuro-
physiologic responses. Biomechanical re-
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sponses may include changes in range of 
motion (ROM)38 or more subtle changes 
in joint mechanics.22,28,39 Neurophysio-
logic responses include changes in motor 
neuron excitability,11,18 altered electromyo-
graphic (EMG) signal amplitude,14,28,39 
and changes in pain perception.4,23,75 Neu-
rophysiologic responses to cervical and 
lumbar spine mobilization are frequently 
described in the literature.4,14,18,23,35,39,75,77 
By comparison, relatively few studies 
have assessed the neurophysiologic effects 
of TSM.7,13 To the authors’ knowledge, 
scapular kinematic changes induced by 
TSM have not yet been studied. Further-
more, there has been very little research 
assessing changes in shoulder muscle ac-
tivity patterns following TSM in patients 
with shoulder pain.

The relationship between thoracic 
spine posture, shoulder ROM, and scap-
ular kinematics is well described in the 
literature.12,34,40,60,65,71 Scapular kinemat-
ics frequently play a role in shoulder 
dysfunction,43,45,46,54 and individuals with 
RCT often demonstrate altered scapu-
lar mechanics, as well as differences in 
shoulder muscle activation, compared to 
their healthy counterparts.44,47,52 We hy-

pothesized that the introduction of a ma-
nipulative force would result in changes 
in thoracic spine posture and shoulder 
motion, as well as changes in scapular 
kinematics and shoulder muscle activa-
tion, that may help to improve the pain 
and dysfunction associated with RCT.

The primary purpose of this study was 
to explore possible biomechanical and 
neurophysiologic mechanisms by which 
TSM may induce changes in pain and 
function in people with signs of RCT by 
assessing changes in scapular kinematics 
and muscle activity. In addition, various 
clinical outcomes associated with TSM, 
including pain, function, and force pro-
duction, were assessed.

METHODS

Overview

T
his controlled laboratory 
study employed a repeated-mea-
sures design to assess changes in 

scapular kinematics and shoulder mus-
cle activity, as well as shoulder pain and 
function, before and after TSM.

Subjects
Thirty subjects, 16 men and 14 women 
(mean  SD age, 30.6  7.9 years), with 
signs of RCT participated in this study. 
The mean duration of their symptoms was 
4.2 months. Subjects were recruited from 
local universities, rowing clubs, as well as 
master’s swim clubs in the Philadelphia 
region. Subjects were screened for signs 
of rotator cuff pathology and included in 
the study if they reported at least 3/10 on 
a numeric pain rating scale (NPRS) with 
performance of the Hawkins-Kennedy, 
Neer, or Jobe empty-can tests for shoul-
der impingement. In a recent review, the 
pooled sensitivity and specificity for the 
Neer test were 0.79 and 0.53, respec-
tively, and 0.79 and 0.59, respectively, for 
the Hawkins-Kennedy test.27 Inclusion 
criteria were purposely kept broad, as the 
study sample was primarily of high-level 
athletes who were not seeking medical 
treatment for shoulder pain but who en-
gaged in repeated overhead activities, a 

population highly susceptible to impinge-
ment and possible rotator cuff pathol-
ogy.8,64 Subjects were excluded from the 
study if they had previous surgical inter-
vention on their shoulder; demonstrated 
signs of complete rotator cuff tear, such 
as gross weakness with performance of 
the Jobe empty-can test and/or resisted 
external rotation or diagnostic imaging 
confirming rotator cuff tear; had a history 
of spinal trauma or surgery; had signs of 
neurologic impairment, including numb-
ness or tingling in the upper quarter; or 
had degenerative bone disease, rheumatic 
disease, or allergies to adhesives. Individ-
uals at risk for osteopenia or osteoporo-
sis, such as postmenopausal women, were 
also excluded from participation. All sub-
jects signed an informed consent form ap-
proved by the Institutional Review Boards 
of Temple University, Arcadia University, 
and the University of Medicine and Den-
tistry of New Jersey.

Instrumentation
Scapular motion was measured before 
and immediately after manipulation us-
ing the LIBERTY (Polhemus, Colchester, 
VT), an electromagnetic tracking device. 
The transmitter was leveled to horizon-
tal using a bubble level and oriented with 
the cardinal planes of the body. Receivers 
were placed on the head, scapula, ster-
num, and humerus. A Velcro strap was 
placed around the subject’s head, and the 
sensor was attached to the posterior as-
pect of the occiput with Velcro. The scap-
ular sensor was affixed to the dorsolateral 
aspect of the acromion with double-sided 
tape and reinforced with cloth tape to 
prevent sensor motion during humeral 
elevation trials. The thoracic sensor was 
placed on the sternum, just below the 
jugular notch, with double-sided tape, 
and the lead wire was secured to the ster-
num with cloth tape to prevent rotation 
of the sensor due to skin movement with 
shoulder elevation. A neoprene sleeve 
was placed over the subject’s arm, and 
the humeral sensor was attached via an 
elastic strap to the distal humerus (FIGURE 

1). The neoprene sleeve prevented sensor 

FIGURE 1. Fully instrumented participant. Blue arrows 
indicate electromyographic electrodes. Orange arrows 
indicate motion receivers (scapular and humeral 
receivers only).
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movement on the skin with humeral rota-
tion. Anatomic landmarks were used to 
digitize the upper-quarter segments and 
to develop anatomic reference frames, 
using a protocol with previously docu-
mented validity and reliability, as con-
sistent with the International Society of 
Biomechanics shoulder protocol.32,51,53,79

Surface EMG data were collected at a 
sampling rate of 1000 Hz and converted 
from analog to digital using the MyoSys-
tem 1200 (Noraxon USA Inc, Scottsdale, 
AZ). Raw data were passed through pre-
selected low-pass (400 Hz) and high-pass 
(20 Hz) filters and were rectified using 
the root-mean-square (RMS) technique. 
Blue Sensor (Ambu Inc, Glen Burnie, 
MD) 3.81-cm silver/silver chloride wet-
gel electrodes, with a 3.81-cm interelec-
trode distance were used to detect muscle 
activity. Surface EMG data were collected 
for the infraspinatus, upper trapezius, 
middle trapezius, lower trapezius, and 
serratus anterior. Electrodes were placed 
as described by Ekstrom et al19 for the 
upper trapezius, middle trapezius, lower 
trapezius, and serratus anterior muscles, 
and as described by Hintermeister et al29 
for the infraspinatus muscle. With the 
shoulder passively abducted to 90°, the 
electrodes for the upper trapezius were 
placed parallel to the muscle fibers, with 1 
electrode superomedial and 1 inferolater-
al to a point 2 cm lateral to the midpoint 
between C7 and the lateral aspect of the 
acromion. Electrodes for the middle tra-
pezius were placed parallel to the muscle 
fibers, one medial and the other lateral 
to a point located 3 cm lateral to the T2 
spinous process. For placement of the 
lower trapezius electrodes, the shoulder 
was passively flexed to 90°. Electrodes 
were placed obliquely, one superior and 
the other inferior to a point 5 cm infero-
lateral from the root of the spine of the 
scapula. For the serratus anterior, the 
shoulder was passively abducted to 90°. 
Electrodes were placed vertically along 
the midaxillary line between ribs 6 and 
8.19 Electrodes for the infraspinatus mus-
cle were placed in parallel, medial and 
lateral to a point 2.5 cm below the mid-

point of the scapular spine. The ground 
electrode was placed on the ulnar styloid 
process (FIGURE 1).

Surface EMG data for reference 
contractions were collected for normal-
ization of the EMG signals. Repeated 
comparisons of normalized EMG signal 
amplitude have demonstrated moder-
ate-to-high reliability when electrodes 
were left in place.50,61 The reference con-
traction for the infraspinatus muscle 
was performed as described by Kelly et 
al.36 The subject sat with the humerus 
aligned with the thorax and the elbow 
flexed to 90°. The tester asked the sub-
ject to isometrically externally rotate the 
humerus, while providing resistance in 
the direction of internal rotation. Refer-
ence contractions for the upper trapezius 
and serratus anterior were performed as 
described by Ekstrom et al.19 The refer-
ence contraction for the upper trapezius 
was performed with the subject in sitting, 
the subject’s involved shoulder abducted 
to 90°, and the neck sidebent to the ip-
silateral side. Simultaneous resistance 
to shoulder abduction and cervical side-
bending was provided by the tester. The 
reference contraction for serratus ante-
rior was also collected with the subject 
seated and the shoulder elevated to 125° 
in the scapular plane. Resistance was ap-
plied distal to the elbow and to the in-
ferior angle of the scapula in an attempt 
to downwardly rotate the scapula. Refer-
ence contractions for the middle and low-
er trapezius were performed in the prone 
position, as described by Kelly et al.36 Re-
sistance was applied to the horizontally 
abducted and externally rotated shoulder 
for testing of the middle trapezius. The 
arm was raised in line with the muscle 
fibers, and downward resistance was ap-
plied to the arm for testing of the lower 
trapezius. Two maximum-effort trials for 
each muscle were performed, in which 
each contraction was held for 5 seconds, 
with a brief rest between trials. Normal-
ization reference values were calculated 
by finding the maximum amplitude of the 
RMS of the EMG data and averaging the 
RMS of the 500 milliseconds on either 

side of the peak value.
Pain was assessed before and im-

mediately after manipulation using an 
NPRS, on which 0 represented no pain 
and 10 represented the worst pain ever. 
Pain-rating data were collected during 
the performance of the Jobe empty-can, 
Hawkins-Kennedy, and Neer tests for 
shoulder impingement, as well as with 
the performance of loaded humeral el-
evation in the frontal, scapular, and sag-
ittal planes. The NPRS has been shown 
to be a valid and reliable tool for subjects 
with shoulder pain55 and to have an esti-
mated minimal clinically important dif-
ference of 2 points.21

Peak shoulder elevation force produc-
tion was assessed with a “break test” be-
fore and immediately after manipulation 
using an ergoFET (Hoggan Health Indus-
tries, Inc, West Jordan, UT) handheld dy-
namometer, with the shoulder in neutral 
rotation and elevated to 90° in the scapu-
lar plane. This method has a previously 
established intrarater reliability between 
0.81 and 0.94,53,70 and a reported minimal 
detectable change of 0.95 kg.70

Shoulder pain and function were mea-
sured premanipulation and 7 to 10 days 
postmanipulation, using the Penn Shoul-
der Score (PSS) and the sports/perform-
ing arts module of the Disabilities of the 
Arm, Shoulder and Hand (SPAM-DASH) 
self-report scales. The PSS is a 100-point 
scale that assesses pain, function, and sat-
isfaction, and is a valid and reliable out-
come measure for people with shoulder 
disorders.37 A score of 100 indicates that 
the participant has identified no func-
tional limitations, with lower scores indi-
cating greater functional limitations. The 
SPAM-DASH is a 4-question scale that 
captures limitations specifically related 
to sports and leisure activities. Scores on 
this scale range from 0 to 100. A score of 0 
indicates no disability, with higher scores 
corresponding to progressively greater 
disability. The SPAM-DASH alone has 
not yet been validated; however, it was 
chosen because it allows subjects to self-
select a sport activity that is currently im-
pacted by their shoulder pain.
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Experimental Procedures
A flow chart of the experimental pro-
cedures is presented in FIGURE 2. Upon 
completion of digitization and EMG ref-
erence contraction procedures, subjects 
were seated in a wooden chair directly 
in front of the transmitter. A Velcro strap 
was placed around their hips and the 
chair to minimize pelvic rotation during 
the thoracic spine flexion and extension 
procedures described below.

To assess muscle force production, 
subjects were asked to place their af-
fected limb in 90° of humeral elevation 
in the scapular plane, with the humerus 
in neutral rotation. Subjects were told to 
hold this position while the tester per-
formed a break test using the handheld 
dynamometer. Resistance was applied 
and increased until the subject could no 
longer maintain the position against the 
force applied by the tester.

Cervical rotation ROM was assessed 
during performance of full available mo-
tion in each direction (right and left), 
with the subject sitting in a comfortable 
posture, and repeated 3 times. Cervical 
spine rotation was measured in relation 
to the thorax. Thoracic spine flexion/ex-
tension was also assessed in the seated 
position. Subjects were instructed to 
maintain contact between their lumbar 
spine and the back of the wooden chair. 
They were then asked to sit in an exag-
gerated upright posture. When given the 
command to start, they were instructed 
to move from the upright posture into the 
end-range slumped posture, while still 
maintaining contact between the lumbar 
spine and the back of the chair. Three rep-
etitions of this motion were performed. 
The thoracic sensor assessed motion rela-
tive to the global coordinate system.

Humeral elevation motion was as-
sessed in relation to the thoracic sensor 
and is therefore referred to as “humero-
thoracic” elevation in this study. To assess 
pain with humeral elevation in the fron-
tal, sagittal, and scapular planes, subjects 
were instructed to move through their full 
available elevation ROM during a 3-sec-
ond count as the tester counted aloud, 

“One thousand one, one thousand two, 
one thousand three.” This was repeated 3 
times in each plane of motion. Humero-
thoracic ROM, scapular kinematic data, 
and EMG data were all collected during 

performance of humeral elevation in the 
sagittal plane. The subjects performed el-
evation with a 2.27-kg handheld weight 
if they weighed less than 68 kg, or with a 
4.54-kg handheld weight if they weighed 

Initial contact: NPRS with ADL, 
occupational or recreational 

activities, n = 51

Informed consent, n = 37

Provocative testing

Excluded from study, n = 14

PSS, sports/performing arts 
module of DASH, force production 

with handheld dynamometry, 
n = 30

Pretest: pain rating with cervical 
rotation, thoracic 

flexion/extension, humeral 
elevation; kinematic and EMG data 

collected

Posttest: kinematic and EMG with 
humeral elevation, force 

production, and pain rating with 
ROM and provocative testing

Session complete: participants 
instructed to engage in normal 

activities; expect follow-up contact 
in 5 to 7 days

Completion of PSS and 
sports/performing arts module of 
DASH, return via self-addressed 
stamped envelope 7 to 10 days 

postintervention, n = 29

Digitization, electrode placement, 
MVIC for SA, UT, MT, LT, IS

Excluded from study, n = 7

Intervention

Mid-TS mob

–cav

+/– cav

Repeat TS 
mob

Repeat CT 
mob

+cav

CT mob

–cav +cav

≥3/10

≥3

<3/10

<3

FIGURE 2. Procedural flow chart. Abbreviations: ADL, activities of daily living; cav, cavitation; CT, cervicothoracic; 
DASH, Disabilities of the Arm, Shoulder and Hand; IS, infraspinatus; LT, lower trapezius; mob, mobilization; MT, 
middle trapezius; MVIC, maximum voluntary isometric contraction; NPRS, numeric pain rating scale; PSS, Penn 
Shoulder Score; SA, serratus anterior; TS, thoracic spine; UT, upper trapezius.
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more than 68 kg, as scapular dyskinesis 
has been shown to be more pronounced 
under loaded conditions.44 Subjects were 
asked to report any pain felt during the 
elevation trials using the NPRS.

Upon completion of the baseline ac-
tivities, the subjects received a thrust 
manipulation of the midthoracic spine 
and the cervicothoracic junction, similar 
to those used by Boyles et al.10 The thrust 
manipulation to the midthoracic spine 
targeted the apex of the thoracic kypho-
sis and was performed with the patient 
seated with his or her arms wrapped 
around the chest (FIGURE 3A). The tester 
stood behind the subject, pressing her 
sternum against the area to be mobilized. 
The tester then wrapped her arms around 
the subject to clasp her hands together. 
The subject was then instructed to take 
a deep breath. As the subject exhaled, 
the tester compressed the subject’s up-
per body, while simultaneously lifting 
the subject slightly, pivoting on the tes-
ter’s sternal region. The cervicothoracic 
thrust manipulation was performed with 
the patient seated with his or her fingers 
interlocked posteriorly at the base of the 
cervical spine. The tester stood behind the 
subject and threaded her arms through 
the subject’s arms so that her hands were 
on top of those of the subject. The subject 
was then gently reclined and asked to ex-

hale, at which time the tester provided a 
distractive thrust directed at the cervico-
thoracic junction (FIGURE 3B). All subjects 
received the midthoracic manipulation 
first, followed by the cervicothoracic junc-
tion manipulation. If a cavitation (audible 
pop) was detected with performance of 
the midthoracic spine manipulation, the 
tester proceeded to the cervicothoracic 
junction manipulation. If no cavitation 
was detected, a second attempt was made 
before moving on to the next manipula-
tion. No more than 2 attempts were made 
for each manipulation.

Care was taken during the manipula-
tion procedures to not move any of the 
markers or electrodes. Upon completion 
of the manipulation procedures, sub-
jects returned to the wooden chair and 
were retested on each of the previously 
described physical procedures. Subjects 
were also given a self-addressed stamped 
envelope and a blank copy of the PSS 
and the SPAM-DASH to take home with 
them. They were contacted by phone or 
e-mail 7 to 10 days after the procedure 
and reminded to complete these ques-
tionnaires and return them to the tester.

Data Reduction
Kinematic Data  Raw scapular kinematic 
data were exported to an Excel (Micro-
soft Corporation, Redmond, WA) file and 

processed using a custom interpolation 
program written in LabVIEW (National 
Instruments Corporation, Austin, TX). 
This program interpolated the 3 elevation 
repetitions in 5° increments and provided 
an average curve. Scapular and clavicu-
lar angles at 30°, 60°, 90°, and 120° of 
humerothoracic elevation were extracted 
for analysis. Elevation is described as 
humerothoracic because humeral eleva-
tion was measured in relationship to the 
thoracic sensor. This resulted in slightly 
lower peak elevation values than would 
be expected when measuring shoulder 
ROM with goniometry.32

EMG Data  The data were exported to an 
Excel file and processed in the custom 
interpolation program in LabVIEW to 
provide RMS values corresponding to 
minimum, 30°, 60°, 90°, and 120° of 
humerothoracic elevation. These values 
were then normalized using the previ-
ously calculated reference contraction 
values and expressed as a percentage of 
the reference contraction value.

Data Analysis
All data were assessed for skewness and 
kurtosis. Mean premanipulation and 
postmanipulation values for ROM, pain 
during provocation testing and ROM, and 
force production were compared using 
2-tailed paired-samples t tests. A 2-factor 
repeated-measures analysis of variance 
was performed to examine the effects of 
condition (pre-TSM and post-TSM) and 
humerothoracic elevation (30°, 60°, 90°, 
and 120°) for each of the 5 dependent ki-
nematic variables. These included scapu-
lar upward rotation, external rotation, and 
posterior tilt, as well as clavicular elevation 
and protraction. Humerothoracic eleva-
tion trials demonstrating signs of techni-
cal errors were excluded from the analysis. 
A 2-factor repeated-measures analysis of 
variance was also performed, with con-
dition and humerothoracic elevation as 
repeated factors, for each of the 5 depen-
dent EMG variables, which included RMS 
values for the infraspinatus, serratus an-
terior, upper trapezius, middle trapezius, 
and lower trapezius muscles. The differ-

FIGURE 3. (A) Midthoracic spine manipulation. (B) Cervicothoracic junction manipulation.
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ences in scores on the PSS and the SPAM-
DASH, assessed prior to and 7 to 10 days 
after receiving the manipulations, were 
assessed using a 2-tailed paired-samples 
t test for each measure. One subject did 
not complete the SPAM-DASH; there-
fore, data for only 29 subjects were used 
for that outcome measure. An alpha level 
of .05 was used to determine significance 
for all variables analyzed.

RESULTS

T
ABLES 1 and 2 provide a summary 
of the pre-TSM and post-TSM kine-
matic and EMG data, respectively. 

TABLE 3 provides a summary of pre-TSM 
and post-TSM data for all clinical vari-
ables. Premanipulation and postmanip-

ulation data for scapular kinematics are 
depicted graphically in FIGURE 4. Analysis 
of variance revealed a small but signifi-
cant decrease in scapular upward rotation 
with humerothoracic elevation following 
TSM (P = .05). A significant interaction 
between condition and elevation angle 
was observed for clavicular elevation; 
however, post hoc t tests revealed no sig-
nificant difference in clavicular elevation 
at 30°, 60°, 90°, or 120° of humerotho-
racic elevation from premanipulation to 
postmanipulation. No differences were 
observed following manipulation for 
scapular posterior tilt, scapular external 
rotation, clavicular protraction, cervical 
rotation ROM, thoracic spine ROM, or 
humerothoracic elevation ROM.

Surface EMG data are graphically de-

picted in FIGURE 5. A small but statistically 
significant increase in middle trapezius 
activity (P = .03) was detected following 
spinal manipulation. No differences were 
detected for the upper or lower trapezius, 
infraspinatus, or serratus anterior muscles.

A statistically significant improvement 
in pain was detected following TSM with 
performance of all provocative tests for 
rotator cuff pathology (P<.001), as well as 
with loaded arm elevation in all 3 planes 
(P<.001). Twenty-four of 30 subjects dem-
onstrated at least a 2-point change with 
all 3 provocative tests, meeting or exceed-
ing the minimal clinically important dif-
ference for the NPRS.56 Force production 
with elevation in the scapular plane also 
significantly improved (P<.001) following 
TSM. Twenty-three of 30 subjects demon-
strated a change greater than 0.95 kg, the 
estimated minimal detectable change.70

Significant improvements were also 
observed 7 to 10 days following TSM on 
both the PSS (P<.001) and the SPAM-
DASH (P<.001), which improved by 7.6 
points and 22.0 points, respectively. Ten 
of 30 subjects exceeded the minimal de-
tectable change of 12 points for the PSS.

DISCUSSION

Scapular Kinematics

T
his study demonstrated that 
TSM may induce small changes 
in scapular upward rotation with 

weighted humeral elevation; however, 
no other changes in scapular kinemat-
ics were detected. Findings with regard 
to scapular upward rotation in people 
with impingement are highly variable. 
Lin et al41 and Ludewig and Braman43 
found that subjects with impingement 
demonstrated less scapular upward 
rotation than those without impinge-
ment. Conversely, McClure et al52 and 
Endo et al20 found that subjects with 
impingement demonstrated more up-
ward rotation. Furthermore, the effects 
of scapular rotations on subacromial 
clearance are not well understood, with 
only a few studies having looked at that 
relationship.31,68 Karduna et al31 found 

TABLE 1
Pre-TSM and Post-TSM Scapular  

and Clavicular Angles*

Abbreviation: TSM, thoracic spine manipulation.
*Values are mean  SD deg.

Kinematic Variable/Humerothoracic Elevation Pre-TSM Post-TSM

Scapular external rotation

30° –25.5  7.2 –28.1  7.9

60° –28.2  6.6 –31.3  6.9

90° –29.2  5.8 –26.2  20.7

120° –25.5  9.3 –25.9  7.8

Scapular posterior tilt

30° –10.6  8.1 –8.4  8.2

60° –7.2  7.6 –7.3  8.9

90° –6.9  8.4 –6.4  8.6

120° –0.8  13.7 0.4  14.2

Scapular upward rotation

30° 1.1  8.2 –0.01  11.2

60° 12.2  9.7 11.2  12.6

90° 24.7  10.1 22.8  11.7

120° 31.1  9.0 29.4  12.1

Clavicular elevation

30° 6.9  5.1 4.6  7.5

60° 10.3  5.6 8.0  7.8

90° 13.5  6.2 11.7  8.1

120° 13.5  6.5 13.3  8.9

Clavicular protraction

30° –16.1  7.3 –14.6  8.9

60° –18.6  7.7 –16.8  9.9

90° –24.1  9.0 –22.1  10.9

120° –28.9  6.2 –26.4  6.9
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that increased scapular upward rotation 
resulted in decreased subacromial clear-
ance, likely increasing compression forc-
es on the subacromial structures. In the 
current study, scapular upward rotation 
decreased by only a few degrees after ma-
nipulation. It is not likely that this small 
difference can fully explain the findings 
of decreased pain with elevation observed 
in this study, as well as in those of Boyles 
et al10 and Strunce et al.69

Electromyography
A statistically significant, albeit small, 
increase in middle trapezius activity was 
detected; however, no significant changes 
in EMG signal amplitude were detected in 
the upper and lower trapezius muscles or 
in the infraspinatus and serratus anterior 
muscles. According to Johnson et al,30 the 
primary role of the middle trapezius is that 
of stabilizing and resisting internal rota-
tion of the scapula. Although the small in-
crease in activity found might have served 
to improve scapular stabilization, it is not 
likely that this finding may fully explain 
the improved shoulder motion observed 
by Strunce et al69 or the increased force 
production observed in the current study.

Only a few prior studies have used 
EMG to detect changes in motor output 
with dynamic activity following spinal 
manipulation.38,39 Lehman and McGill38 
assessed changes in spine kinematics and 
EMG signal amplitude of the erector spi-
nae muscles in a professional golfer fol-
lowing lumbar spine manipulation. They 
found decreased EMG signal both in 
quiet stance and during performance of 
a golf swing. In a later study, they found 
that in quiet stance most muscles exhibit-
ed no change in activity level after lumbar 
manipulation, and that muscle activation 
during performance of dynamic tasks 
postmanipulation was highly variable, 
precluding statistical significance.39 The 
results of the current study are in agree-
ment with the results of the studies by 
Lehman and McGill,38,39 in that few dif-
ferences in muscle activity were detected 
after spinal manipulation, in this case, 
thoracic manipulation.

Pain and Function
Subjects demonstrated decreased shoul-
der pain and increased force production 
immediately following spinal manipula-
tion. Furthermore, they demonstrated 
improved shoulder function on the PSS 
and the SPAM-DASH at follow-up 7 to 10 
days after manipulation. These changes 
in pain, force production, and function 
were not accompanied by substantial 
changes in ROM, scapular kinematics, 
or shoulder muscle activation. The re-
sults of this study are in agreement with 
the findings by Boyles et al10 and Strunce 
et al69 regarding decreased pain with per-
formance of both provocative testing as 
well as with active humeral elevation im-
mediately following TSM.

Shoulder elevation force production 
increased immediately after TSM. This 
increase in force production might have 
simply been the result of motor learn-
ing associated with practice or changes 
in sensory perception. It was speculated 
that the increase in force might be ex-
plained by a decrease in pain, as research 
has suggested that pain may alter tempo-
rospatial as well as quantitative elements 
of force production.16,17,75,80 However, post 
hoc analysis revealed no significant as-
sociation between changes in pain and 
changes in force (r values ranged from 
0.04 to 0.09).

Improved functional status 7 to 10 
days after manipulation was observed 
across subjects, as indicated by the PSS 

TABLE 2
Pre-TSM and Post-TSM Root-Mean-Square 

Electromyographic Data*

Abbreviation: TSM, thoracic spine manipulation.
*Values are mean  SD expressed as a percentage of maximum voluntary isometric contraction. With 
the exception of middle trapezius (P = .03), no significant differences in muscle activity were detected.

Muscle/Humerothoracic Elevation Pre-TSM Post-TSM

Upper trapezius

30° 65.3  28.5 71.3  46.7

60° 84.0  37.1 93.2  60.5

90° 72.2  54.8 96.9  78.9

120° 93.3  49.3 83.5  47.1

Middle trapezius

30° 15.2  9.5 23.6  17.2

60° 20.9  16.5 25.4  15.3

90° 23.1  7.3 28.7  18.4

120° 21.4  17.0 29.9  28.3

Lower trapezius

30° 28.3  19.1 25.5  23.8

60° 33.1  15.6 47.2  30.4

90° 48.2  19.4 46.5  33.9

120° 52.2  36.4 45.7  29.1

Infraspinatus

30° 22.4  27.1 25.1  16.8

60° 28.6  18.3 30.7  27.5

90° 28.4  24.6 33.2  21.9

120° 34.4  25.3 27.7  24.7

Serratus anterior

30° 33.4  24.2 45.1  36.6

60° 52.2  38.4 73.0  73.3

90° 64.5  56.9 79.8  65.3

120° 71.4  53.7 75.4  49.2
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and SPAM-DASH. Changes on the PSS 
(mean  SD difference, 7.6  9.3) were 
less than those of the SPAM-DASH (7.6 
 9.3). This is likely due to a ceiling ef-
fect with the PSS, which captures basic 
function. The subjects in this study were 
mostly high functioning, with 9 elite ath-
letes, 3 collegiate athletes, and 4 highly 
competitive recreational athletes. In 
contrast, the SPAM-DASH assesses dis-
ability associated with a subject-selected 
task. Though participants were generally 
high functioning on the PSS with regard 
to self-care and activities of daily living 
(mean  SD baseline score, 79.8  11.4 
out of 100, higher scores corresponding 
to better function), they clearly felt that 
their shoulder pain limited their ability 
in tasks such as sport participation (mean 
 SD baseline score, 37.1  23.1 out of 
100, lower scores corresponding to bet-
ter function). Although the validity and 
reliability of the SPAM-DASH have not 
been established, it appeared to be more 
sensitive to changes in subject self-select-
ed sport or activities they felt were most 
impacted by their shoulder pain.

Range of Motion
With regard to cervical ROM, Nansel et 
al58 hypothesized that the application of a 
TSM might induce movement of thoracic 
and cervical spine segments and there-
fore change cervical and thoracic spine 
ROM. Such changes58 were not detected 
in this study. However, only 4 subjects 
reported pain with cervical rotation and 
none reported pain with thoracic spine 
flexion and extension during baseline as-
sessments, suggesting that this cohort of 
subjects might not have painful restric-
tions in segmental thoracic or cervical 
spine motion. The findings of this study 
related to spinal ROM are similar to 
those of Lehman and McGill,38,39 who de-
tected no changes in peak lumbar spine 
ROM following lumbar spine manipula-
tion during the performance of unipla-
nar flexion and extension or during axial 
rotation in subjects with low back pain. 
They did, however, observe an increase in 
total ROM during the performance of a 

complex motor task, suggesting that as-
sessment of simple, uniplanar tasks may 
not detect subtle changes in joint kine-
matics. Complex tasks require coupled 
joint motions and more complex coor-
dination, which may better demonstrate 
subtle biomechanical changes associated 
with improved joint motion. Assessment 
of a more complex functional task follow-
ing thoracic spinal manipulation was not 
performed in this study.

There were several limitations to the 
spinal ROM assessment performed in 
this study. First, thoracic rotation was not 
restricted during performance of cervical 
rotation, and cervical ROM was assessed 
in relation to the thorax. Therefore, if 
thoracic rotation ROM increased, subtle 
increases in cervical ROM might not have 
been detected. Furthermore, thoracic 

motion was only assessed in relation to 
the global coordinate system, thus seg-
mental thoracic motion was not assessed; 
therefore, subtle changes in segmental 
thoracic motion might have gone unde-
tected. Finally, our method of measur-
ing thoracic motion, although consistent 
with assessments of planar spine ROM in 
the literature, has not been validated.38,39

No changes in humerothoracic el-
evation were observed in this study. In 
contrast, Strunce et al69 found that TSM 
was associated with increased humeral 
elevation ROM. The conflicting findings 
of these studies might be due to their use 
of different measurement techniques, as 
well as differences in elevation condi-
tions. Strunce et al69 used goniometry to 
assess overall shoulder ROM, whereas 
this study employed an electromagnetic 

TABLE 3
Pre-TSM and Post-TSM Data for  
All Clinical Outcome Measures

Abbreviations: HT, humerothoracic; NPRS, numeric pain rating scale; PSS, Penn Shoulder Score; 
ROM, range of motion; SPAM-DASH, sports/performing arts module of the Disabilities of the Arm, 
Shoulder and Hand questionnaire; TSM, thoracic spine manipulation.
*Values are mean  SD.
†Values are mean  SD (95% confidence interval).
‡0-to-10 scale where higher score is more pain.
§Assessed immediately after spinal manipulation.
║Assessed 7 to 10 days after spinal manipulation. 
¶100-point scale where a higher score is better. 
#100-point scale where a lower score is better.

Pre-TSM* Post-TSM* Difference† P Value

Pain, NPRS‡ §

Jobe 2.9  1.2 0.3  0.5 –2.6  1.2 (–3.1, –2.2) <.001

Neer 3.2  1.2 0.6  0.9 –2.6  1.3 (–3.0, –2.1) <.001

Hawkins-Kennedy 3.2  1.1 0.4  0.7 –2.8  1.3 (–3.3, –2.3) <.001

Cervical rotation 0.5  1.2 0.1  0.4 –0.4  0.9 (–0.7, 0.0) .04

Pain, HT elevation in 3 planes

Sagittal 2.3  1.7 0.3  0.6 –2.0  0.3 (–2.6, –1.4) <.001

Scapular 1.2  1.5 0.1  0.4 –1.1  1.4 (–1.7, –0.6) <.001

Frontal 2.6  1.7 0.3  0.8 –2.3  1.5 (–2.8, –1.8) <.001

Force production, kg§

Shoulder elevation 7.4  2.5 9.9  2.9 2.5  1.4 (4.3, 6.7) <.001

Pain and function║

PSS¶ 79.8  11.4 87.4  10.9 7.6  9.3 (4.1, 11.1) <.001

SPAM-DASH# 37.1  23.1 20.3  23.1 –16.8  16.4 (–22.5, –10.2) <.001

ROM, deg§

Thoracic flexion/extension 47.4  14.8 45.7  14.6 –1.8  7.6 (–4.5, 0.9) .20

Cervical rotation 117.9  22.2 119.4  21.5 1.4  10.0 (–2.8, 5.0) .50

HT elevation (sagittal plane) 128.1  27.6 133.2  22.3 5.1  16.8 (–1.8, 10.2) .30
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tracking system to assess humerothoracic 
elevation. In addition, humeral elevation 
ROM was assessed under weighted con-
ditions in this study, whereas humeral 
elevation was performed unweighted in 
the study by Strunce et al.69 Finally, with 
regard to subject population, only 2 sub-
jects in this study were actively seeking 
medical attention for their shoulder pain. 
Nine subjects were elite athletes who re-
ported that their shoulder pain interfered 
with participation in their sport but did 
not wish to seek medical attention. Some 
of the subjects in the studies by both 
Boyles et al10 and Strunce et al69 were al-
ready seeking treatment for their shoul-
der pain and were referred to the study by 
their physical therapist.

Other limitations associated with this 
study include the lack of blinding, ran-
domization, and a control group. Several 

steps were taken to address blinding. 
During force production testing, the re-
sults screen was covered and the subject 
was not informed of force production 
values. Subjects also did not know their 
pretest PSS or SPAM-DASH scores, so 
they could not compare scores when 
completing their posttest questionnaires. 
In addition, all ROM measurements were 
obtained using the electromagnetic track-
ing device, which prevented the tester 
from inadvertently influencing ROM val-
ues. The major limitation with regard to 
blinding was that the examiner also per-
formed the manipulations. Tools such as 
electromagnetic tracking and EMG limit 
the tester’s ability to influence outcomes, 
as the data are not collected directly by 
the tester but must undergo computer 
processing and reduction to derive val-
ues used for analysis. Likewise, the sub-

ject cannot see the data while performing 
the activities. One additional limitation 
to this study might have been the severity 
of the subjects’ symptoms. Most subjects 
were not seeking medical attention for 
their shoulder pain and might not have 
exhibited abnormal scapular kinematics 
or altered motor control. Furthermore, 
assessment of segmental spine motion 
might have been beneficial to ascertain 
whether this particular cohort demon-
strated restrictions in segmental spine 
mobility. Finally, we cannot assume a 
cause-and-effect relationship due to the 
lack of a control group. We can, however, 
address one aspect of the placebo effect: 
post hoc analysis revealed that pain de-
creases were not dependent on cavita-
tion. The mean decreases in pain with 
provocative testing ranged from 2.4 to 
3.0, regardless of cavitation.
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FIGURE 4. Scapular and clavicular angles at 30°, 60°, 90°, and 120° of humerothoracic elevation. *With the exception of scapular upward rotation (P = .05), no significant 
differences in scapular and clavicular kinematics were detected. Data are mean  SD.
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KEY POINTS
FINDINGS: Thoracic spine manipulation 
was associated with decreased pain and 
improved shoulder function in people 
with signs of RCT. These improvements 
are not likely associated with changes in 
scapular kinematics or changes in EMG 
amplitude of the shoulder muscles as-
sessed.
IMPLICATIONS: These findings add to the 
growing body of literature suggesting 
that TSM may be a viable tool to help 
decrease pain for people with signs of 
RCT, which may allow them to better 
participate in the rehabilitation process.
CAUTION: The absence of a control group 
and blinding and the high level of func-
tion of the participants must be consid-
ered when interpreting the results of 
this study.

CONCLUSION

T
he findings of this study indi-
cate that TSM may improve pain 
and function immediately and up 

to 7 to 10 days postmanipulation in 
people with signs of RCT; however, the 
improvements associated with TSM are 
not likely explained by changes in scapu-
lar kinematics or shoulder muscle activ-
ity. Other neurophysiologic processes 
likely contributed to the significant 
reductions in pain and improvements 
in function. Further studies assessing 
changes in pain perception, combined 
with assessments of altered neuromotor 
control and segmental spine kinematics, 
may help to clarify how TSM influences 
pain and function in people with signs 
of RCT. t
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