
Chapter 4

Server Lifecycle
A server socket listens for connections rather than initiating them. The typical
lifecycle looks something like this:

1. create

2. bind

3. listen

4. accept

5. close

We covered #1 in the previous chapter, now we'll continue on with the rest of the list.

Servers BindServers Bind
The second step in the lifecycle of a server socket is to bindbind to a port where it will
listen for connections.

26

./code/snippets/bind.rb
require 'socket'

First, create a new TCP socket.
socket = Socket.new(:INET, :STREAM)

Create a C struct to hold the address for listening.
addr = Socket.pack_sockaddr_in(4481, '0.0.0.0')

Bind to it.
socket.bind(addr)

This is a low-level implementation that shows how to bind a TCP socket to a local
port. In fact it's almost identical to the C source code you would write to accomplish
the same thing.

This particular socket has now claimed port 4481 on the local host. Other sockets will
not be able to bind to this port, doing so would result in an Errno::EADDRINUSE

exception being raised. Client sockets will be able to connect to this socket using
this port number, once a few more steps have been completed.

If you run that code block you'll notice that it exits immediately. The code works but
doesn't yet do enough to actually listen for a connection. Keep reading to see how to
put the server in listen mode.

So a server binds to a specific, agreed-upon port number which a client socket can
then connect to.

Of course, Ruby provides syntactic sugar so that you never have to actually use
Socket.addr_in or Socket#bind directly. But before learning the syntactic sugar it's
important that we see how to do things the hard way.

27

What port should I bind to?What port should I bind to?

This is an important consideration for anyone writing a server. Should you
pick a random port number? How can you tell if some other program has
already 'claimed' a port as their own?

In terms of what's possible, any port from 1-65,535 can be used, but there are
important conventions to consider before picking a port.

The first rule: don't try to use a port in the 0-1024 rangedon't try to use a port in the 0-1024 range. These are
considered 'well-known' ports and are reserved for system use. A few
examples: HTTP traffic happens on port 80, SMTP traffic happens on port 25,
rsync happens on port 873. Binding to these ports typically requires root
access.

The second rule: don't use a port in the 49,000-65,535 rangedon't use a port in the 49,000-65,535 range. These are the
ephemeral ports. They're typically used by services that don't operate on a
predefined port number but need ports for temporary purposes. They're also
an integral part of the connection negotiation process we'll see in the next
section. Picking a port above this number might cause conflicts for some of
your users.

Besides that, any port from 1025-48,999 is fair game for your usesany port from 1025-48,999 is fair game for your uses. If you're
planning on claiming one of those ports as the port for your server then you
should have a look at the IANA list of registered ports 2 and make sure that it
doesn't conflict with some other popular server program out there.

2.https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

28

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

Binding to Loopback Addresses

One thing to be wary of when developing your applications: if you bind to the
loopback host address 127.0.0.1 then your server socket will only be able to handle
connections that come from that exact same host.

If you want to be able to handle connections from any host then you should bind to
the 0.0.0.0 address.

./code/snippets/loopback_binding.rb
require 'socket'

This socket will only be able to handle connections from
clients on the 127.0.0.1 host.
local_socket = Socket.new(:INET, :STREAM)
local_addr = Socket.pack_sockaddr_in(4481, '127.0.0.1')
local_socket.bind(local_addr)

This socket will be able to handle connections from any
client on any host.
remote_socket = Socket.new(:INET, :STREAM)
remote_addr = Socket.pack_sockaddr_in(4481, '0.0.0.0')
remote_socket.bind(remote_addr)

Servers ListenServers Listen
After creating a socket, and binding to a port, the socket needs to be told to listen for
incoming connections.

29

./code/snippets/listen.rb
require 'socket'

Create a socket and bind it to port 4481.
socket = Socket.new(:INET, :STREAM)
addr = Socket.pack_sockaddr_in(4481, '0.0.0.0')
socket.bind(addr)

Tell it to listen for incoming connections.
socket.listen(5)

The only addition to the code from the last chapter is a call to listen on the socket.

If you run that code snippet it still exits immediately. There's one more step in the
lifecycle of a server socket required before it can process connections. That's covered
in the next chapter. First, more about listen .

The Listen Queue

You may have noticed that we passed an integer argument to the listen method. This
number represents the maximum number of pending connections your server socket
is willing to tolerate. This list of pending connections is called the listen queuethe listen queue.

Let's say that your server is busy processing a client connection, when any new
client connections arrive they'll be put into the listen queue. If a new client
connection arrives and the listen queue is full then an instance of
Errno::ECONNREFUSED will be raised for the client.

30

How big should the listen queue be?How big should the listen queue be?

OK, so the size of the listen queue looks a bit like a magic number. Why
wouldn't we want to set that number to 10,000? Why would we ever want to
refuse a connection? All good questions.

First, we should talk about limits. You can get the current maximum allowed
listen queue size by inspecting Socket::SOMAXCONN at runtime. On my Mac this
number is 128. So I'm not able to use a number larger than that. The root
user is able to increase this limit at the system level for servers that need it.

Ultimately you don't want to have connections waiting in your listen queue
because that means that users of your service are having to wait for their
responses.

Let's say you're running a server and you're getting of reports of
Errno::ECONNREFUSED . That's not an indication that you need to increase the
size of your listen queue. That would be acceptable only as a temporary
solution. Rather this would be an indication that you need more server
instances or that you need a different architecture. See the last part of this
book for tips on the second part.

So the size of the listen queue depends on your needs and your limits.
Generally you don't want to be refusing connections, so you can set it to the
maximum allowed queue size using server.listen(Socket::SOMAXCONN) .

31

Servers AcceptServers Accept
Finally we get to the part of the lifecycle where the server is actually able to handle
an incoming connection. It does this with the accept method. Here's how we can
create a listening socket and receive the first connection:

./code/snippets/accept.rb
require 'socket'

Create the server socket.
server = Socket.new(:INET, :STREAM)
addr = Socket.pack_sockaddr_in(4481, '0.0.0.0')
server.bind(addr)
server.listen(Socket::SOMAXCONN)

Accept a connection.
connection, _ = server.accept

Now if you run that code you'll notice that it doesn't return immediately! That's right,
the accept method will block until a connection arrives. Let's give it one using netcat:

$ echo ohai | nc localhost 4481

When you run these snippets you should see the nc(1) program and the Ruby
program exit successfully. It may not be the most epic finale ever, but it's proof that
everything is connected and working properly. Congrats!

32

Accept is blocking

The accept call is a blocking call. It will block the current thread indefinitely until it
receives a new connection.

Remember the listen queue we talked about in the last chapter? accept simply
pops the next pending connection off of that queue. If none are available it
waits for one to be pushed onto it.

Accept returns an Array

In the example above I assigned two values from one call to accept . The accept method
actually returns an Array. The Array contains two elements: first, the connection,
and second, an Addrinfo object. This represents the local address of that connection.

33

AddrinfoAddrinfo

Addrinfo is a Ruby class that represents a host and port number. It wraps up
an endpoint representation nicely. You'll see it as part of the standard Socket

interface in a few places.

You can construct one of these using something like Addrinfo.tcp('localhost', 4481) .
Some useful methods are #ip_address and #ip_port . Have a look at $ ri Addrinfo for
more.

Let's begin by taking a closer look at the connection and addr returned from #accept .

34

Thanks For Reading!

This was a sample of Working With TCP Sockets.

If you haven't already, visit http://workingwithtcpsockets.com/ to be notified when
it's ready.

Jesse (@jstorimer)

186

http://workingwithtcpsockets.com/
http://twitter.com/jstorimer

	Releases
	Introduction
	My Story
	Who is this book for?
	The Berkeley Sockets API
	What's Not Covered?
	netcat
	Acknowledgements

	Your First Socket
	Ruby's Socket Library
	Creating Your First Socket
	Understanding Endpoints
	Loopbacks
	IPv6
	Ports
	Creating Your Second Socket
	Docs
	System Calls From This Chapter

	Establishing Connections
	Server Lifecycle
	Servers Bind
	Binding to Loopback Addresses

	Servers Listen
	The Listen Queue

	Servers Accept
	Accept is blocking
	Accept returns an Array
	Connection Class
	File Descriptors
	Connection Addresses
	The Accept Loop

	Servers Close
	Closing on Exit
	Different Kinds of Closing

	Ruby Wrappers
	Server Construction
	Connection Handling
	Wrapping it all into one

	System Calls From This Chapter

	Client Lifecycle
	Clients Bind
	Clients Connect
	Connect Gone Awry

	Ruby Wrappers
	Client Construction
	Complex Client Construction

	System Calls From This Chapter

	Exchanging Data
	Streams

	Sockets Can Read
	Simple Reads
	It's Never That Simple
	Read Length
	Blocking Nature
	The EOF Event
	Partial Reads
	System Calls From This Chapter

	Sockets Can Write
	System Calls From This Chapter

	Buffering
	Write Buffers
	How Much to Write?
	Read Buffers
	How Much to Read?

	Our First Client/Server
	The Server
	The Client
	Put It All Together
	Thoughts

	Socket Options
	SO_TYPE
	SO_REUSE_ADDR

	Non-blocking IO
	Non-blocking Reads
	Non-blocking Writes
	Non-blocking Accept
	Non-blocking Connect

	Multiplexing Connections
	select(2)
	Retrying Partial Reads/Writes
	Events Other Than Read/Write
	EOF
	Accept
	Connect

	High Performance Multiplexing

	Nagle's algorithm
	Framing Messages
	Using newlines
	Using A Content Length

	Timeouts
	Unusable Options
	IO.select
	Accept Timeout
	Connect Timeout

	SSL Sockets
	Network Architectures
	The Muse

	Serial
	Explanation
	Implementation
	Considerations

	Process per connection
	Explanation
	Implementation
	Considerations
	Examples

	Thread per connection
	Explanation
	Implementation
	Considerations
	Examples

	Preforking
	Explanation
	Implementation
	Considerations
	Examples

	Thread Pool
	Overview
	Implementation
	Considerations
	Examples

	Evented (Reactor)
	Overview
	Implementation
	Considerations

	Hybrids
	nginx
	Puma
	EventMachine

