Sending a command to the Tag from a Host (Reader)

This example demonstrates the user setting the transmit interval to 5 seconds, displaying the current time, displaying the battery level and enabling IO pins 1 and 3 to analog inputs referenced at 3 volts. The following outlines how this would be accomplished.

Start Byte: 55

"55" signals the reader a tag command is being sent, thus all packets being sent to the tag begin with byte "55". This is referred to as the start byte.

Packet Length: E0

The packet length tells the tag how many bytes are being sent (not including the start bytes or packet length bytes, i.e. starting with the packet identifier bytes).

Packet Identifer: 02

The packet identifier can hold two values "02" or "04", "02" is used when sending a command to the tag. "04" is used when a data packet is being sent from the tag.

Command Handle: 05

The command handle is used by the reader to identify the command, in the event that multiple commands are being sent to tags with different ID's, a queue is used to store the commands until the tag wakes from sleep. Therefore the command handle should never be the same as another command handle. A simple way to implement this is to increment the command handle each command.

Tag ID: 0003

The ID of the tag that the command is being sent to.

Command Header: 80 = 1000 0000

The command header is asking the tag to send an acknowledge packet back to the reader and is indicating to the tag the parameters will apply to mode 0 (because bits 4,5,6 "000" in decimal is equal to 0).

Packet Control Header: C0 = 1100 0000

The packet control header is telling the tag that a network field (bit 7) and GPIO field (bit 6) are present.

Network Control Mask Header: 60 = 0110 0000

This indicates to the tag the the Time mask bit and TX interval setting bit are enabled (Pins 5 and 6 are "11").

Network Control Action Header: 60 = 0110 000

This indicates to the tag the the Time report is to be enabled and the TX interval is to be set to the TX interval value.

TX Interval Bit: 04

This tells the tag to change the TX interval to the value associated with the byte 04, which is equal to 5 seconds. This is determined using a lookup table, which is preset in the firmware.

<u>GPIO Mask Byte:</u> 0A = 0000 1010

This indicates that IO pins 1 and 3 are being configured.

<u>GPIO A/D Configuration Byte:</u> 0A = 0000 1010

This indicates that IO pins 1 and 3 are being configured at analog inputs.

<u>GPIO I/O Configuration Byte:</u> 00 = 0000 0000

This indicates that IO pins 1 and 3 are being configured as inputs (bits 1 and 3 are "0" indicating inputs, where as a value of "1" indicates an output).

<u>GPIO Digital Configuation/Analog Reference Byte:</u> 0A = 0000 1010

This indicates that the Analog inputs on IO pins 1 and 3 are being referenced at 3 volts. A "1" indicates a 3 volt reference, while a "0" would represent a 1.1V reference. Assuming pins were configured as analog inputs in the previous Bytes.

<u>GPIO Reporting Configuration Byte:</u> 0A = 0000 1010

This indicates that the data on IO inputs 1 and 3 (because bits 1 and 3 are set to "1") are to be transmitted in the beacon packet sent by the tag. A 10-bit Analog to Digital converter is used thus each analog input is reported as two bytes.

Finally, the required packet would be:

55E00205000380C06060040A0A000A0A

Sending this command produces the following reply from both the tag and reader:

+DEBUG [>><u>550E0208000380C06060040A0A000A0A</u>] <=== Host Command

+DEBUG [<<AA03020800] <=== Reader Command Packet Response

+DEBUG [<<AA12040003FFFFEC30C010C888050501560000DE] <=== Tag transmitting old data

+DEBUG [<<AA09040003FFFFEC3100DF] <=== Tag acknowledges command

 $+ DEBUG \ [<<\!AA1A040003FFFFED30C0900004DA2C8880F0F0145011F00C00000DF] <=== Tag \ adjusts \ output$